Bài 5.17 trang 202 SBT đại số và giải tích 11


Giải bài 5.17 trang 202 sách bài tập đại số và giải tích 11. Tìm đạo hàm của hàm số sau:

Đề bài

Tìm đạo hàm của hàm số sau:

\(y = {\left( {a + {b \over x} + {c \over {{x^2}}}} \right)^4}\) (a,b,là các hằng số).

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(\left( {{u^n}} \right)' = n{u^{n - 1}}u'\)

Lời giải chi tiết

\(\begin{array}{l}
y' = 4{\left( {a + \dfrac{b}{x} + \dfrac{c}{{{x^2}}}} \right)^3}\left( {a + \dfrac{b}{x} + \dfrac{c}{{{x^2}}}} \right)'\\
= 4{\left( {a + \dfrac{b}{x} + \dfrac{c}{{{x^2}}}} \right)^3}.\left( { - \dfrac{b}{{{x^2}}} + \dfrac{{ - c\left( {{x^2}} \right)'}}{{{x^4}}}} \right)\\
= 4{\left( {a + \dfrac{b}{x} + \dfrac{c}{{{x^2}}}} \right)^3}\left( { - \dfrac{b}{{{x^2}}} - \dfrac{{2cx}}{{{x^4}}}} \right)\\
= - 4{\left( {a + \dfrac{b}{x} + \dfrac{c}{{{x^2}}}} \right)^3}\left( {\dfrac{b}{{{x^2}}} + \dfrac{{2c}}{{{x^3}}}} \right)
\end{array}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài