Bài 7 trang 216 SBT giải tích 12


Giải bài 7 trang 216 sách bài tập giải tích 12. Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau trên các khoảng, đoạn tương ứng:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau trên các khoảng, đoạn tương ứng:

LG a

a) g(x) = |x3 + 3x2 – 72x + 90| trên đoạn [-5; 5]

Lời giải chi tiết:

a) Xét hàm số \(f(x) = {x^3} + 3{x^2} - 72x + 90\)  trên đoạn [-5; 5]

\(f'(x) = 3{x^2} + 6x - 72;\)

\(f'(x) = 0\) \(\Leftrightarrow \left[ {\matrix{{x = 4} \cr {x = - 6 \notin {\rm{[}} - 5;5]} \cr} } \right.\)

\(f( - 5) = 400;\) \(f(5) =  - 70;\) \(f(4) =  - 86\)

Ngoài ra, f(x) liên tục trên đoạn [-5; 5] và \(f( - 5).f(5) < 0\) nên tồn tại \({x_0} \in ( - 5;5)\) sao cho \(f({x_0}) = 0\)

Ta có \(g(x) = |f(x)| \ge 0\) và \(g({x_0}) = |f({x_0})| = 0;\) \(g( - 5) = |400| = 400\);

\(g(5) = |-70| = 70 ;\) \( g(4) = |f(4)| = |-86| = 86\)

Vậy \(\mathop {\min g(x)}\limits_{{\rm{[}} - 5;5]}  = g({x_0}) = 0\)

\(\mathop {{\rm{max }}g(x)}\limits_{{\rm{[}} - 5;5]}  = g( - 5) = 400\)

LG b

b) f(x) = x4 – 4x2 + 1 trên đoạn [-1; 2]

Lời giải chi tiết:

b) Ta có:

\(\begin{array}{l}
f'\left( x \right) = 4{x^3} - 8x = 4x\left( {{x^2} - 2} \right)\\
f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \pm \sqrt 2
\end{array} \right.\\
f\left( { - 1} \right) = - 2\\
f\left( 0 \right) = 1\\
f\left( {\sqrt 2 } \right) = - 3\\
f\left( { - \sqrt 2 } \right) = - 3\\
f\left( 2 \right) = 1
\end{array}\)

Vậy \(\mathop {\min f(x)}\limits_{{\rm{[}} - 1;2]}  = f(\sqrt 2 ) =  - 3;\) \(\mathop {{\rm{max f}}(x)}\limits_{{\rm{[}} - 1;2]}  = f(2) = f(0) = 1\)

LG c

c) f(x) = x – ln x + 3 trên khoảng \((0; + \infty )\)

Lời giải chi tiết:

c) Ta có:

\(\begin{array}{l}
f'\left( x \right) = 1 - \dfrac{1}{x} = \dfrac{{x - 1}}{x}\\
f'\left( x \right) = 0 \Leftrightarrow x = 1 \in \left( {0; + \infty } \right)
\end{array}\)

Ngoài ra, đạo hàm đổi dấu từ âm sang dương qua điểm \(x=1\) nên hàm số đạt cực tiểu tại \(x=1\) và \({f_{CT}} = f\left( 1 \right) = 4\)

Mà \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty \) nên hàm số không có GTLN.

Vậy \(\mathop {\min f(x)}\limits_{(0; + \infty )}  = f(1) = 4\) . Không có giá trị lớn nhất.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí