Bài 3 trang 216 SBT giải tích 12


Giải bài 3 trang 216 sách bài tập giải tích 12. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : b)Tính diện tích hình phẳng giới hạn bởi (C), tiếp tuyến của (C) tại A(2; 3) và đường thẳng x = 4.

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : \(y = {{4x - 5} \over {x - 1}}\)

Lời giải chi tiết:

Tập xác định:  D = R\{1}

Đạo hàm: \(y' = {1 \over {{{(x - 1)}^2}}}\)

Bảng biến thiên:

Các khoảng đồng biến là \(( - \infty ;1)\) và \((1; + \infty )\) :

Tiệm cận đứng x = 1 vì \(\mathop {\lim }\limits_{x \to {1^ + }} y =  - \infty ;\mathop {\lim }\limits_{x \to {1^ - }} y =  + \infty \)

Tiệm cận ngang  y = 4  vì \(\mathop {\lim }\limits_{x \to  \pm \infty } y = 4\)

Giao với các trục tọa độ: (0; 5) và \(({5 \over 4};0)\)

Đồ thị

 

LG b

Tính diện tích hình phẳng giới hạn bởi (C), tiếp tuyến của (C) tại A(2; 3) và đường thẳng x = 4.

Lời giải chi tiết:

Ta có:  y’(2) = 1. Phương trình tiếp tuyến là \(y = 1\left( {x - 2} \right) + 3 \Leftrightarrow y = x + 1\)

Diện tích của miền cần tìm là:

\(S = \int\limits_2^4 {\left( {x + 1 - \dfrac{{4x - 5}}{{x - 1}}} \right)dx} \) \( = \int\limits_2^4 {\left( {x + 1 - 4 + \dfrac{1}{{x - 1}}} \right)dx} \)\( = \int\limits_2^4 {\left( {x - 3 + \dfrac{1}{{x - 1}}} \right)dx} \) \( = \left. {\left( {\dfrac{{{x^2}}}{2} - 3x + \ln \left| {x - 1} \right|} \right)} \right|_2^4\)  \( =  - 4 + \ln 3 + 4 = \ln 3\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm Giải tích 12

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài