Bài 17 trang 218 SBT giải tích 12


Giải bài 17 trang 218 SBT giải tích 12. Tính các tích phân sau:

Lựa chọn câu để xem lời giải nhanh hơn

Tính các tích phân sau:

LG a

\(\int\limits_{ - 2}^4 {{{({{x - 2} \over {x + 3}})}^2}dx} \) (đặt t  = x  +3)    

Lời giải chi tiết:

Đổi biến \( t = x + 3  \Rightarrow  x – 2 = t – 5\) . Khi x = - 2 thì t = 1, khi x = 4 thì t = 7, ta có:

\(\int\limits_{ - 2}^4 {{{({{x - 2} \over {x + 3}})}^2}dx = \int\limits_1^7 {(1 - {{10} \over t} + {{25} \over {{t^2}}}} } )dt\)

\(= (t - 10\ln t - {{25} \over t})\left| {\matrix{7 \cr 1 \cr} } \right. = 27{3 \over 7} - 10\ln 7\)

LG b

\(\int\limits_{ - 4}^6 {(|x + 3| - |x - 4|)dx} \)

Lời giải chi tiết:

\(\int\limits_{ - 4}^6 {(|x + 3| - |x - 4|)dx}\)

\( =  - 7\int\limits_{ - 4}^{ - 3} {dx}  + \int\limits_{ - 3}^4 {(2x - 1)dx}  + \int\limits_4^6 {7dx}  = 7\)

LG c

\(\int\limits_{ - 3}^2 {{{dx} \over {\sqrt {x + 7}  + 3}}} \)    (đặt \(t = \sqrt {x + 7} \)  hoặc \(t = \sqrt {x + 7}  + 3\) )

Lời giải chi tiết:

Đổi biến \(t = \sqrt {x + 7} \)  , ta có \(I = \int\limits_2^3 {{{2tdt} \over {t + 3}}}  = 2 - 6\ln 1,2\)

Nếu đổi biến \(t = \sqrt {x + 7}  + 3\)  thì ta có \(I = \int\limits_5^6 {(2 - {6 \over t})dt} \)

LG d

\(\int\limits_0^3 {(x + 2){e^{2x}}dx} \)

Lời giải chi tiết:

Đặt   \(u = x + 2,dv = {e^{2x}}dx \Rightarrow du = dx,v = {1 \over 2}{e^{2x}}\)

Ta có  \(I = {1 \over 2}(x + 2){e^{2x}}\left| {\matrix{3 \cr 0 \cr} } \right. - {1 \over 2}\int\limits_0^3 {{e^{2x}}} dx\)

\(= {1 \over 2}(5{e^6} - 2) - {1 \over 4}({e^6} - 1) = {3 \over 4}(3{e^6} - 1)\)

LG e

\(\int\limits_2^5 {{{\sqrt {4 + x} } \over x}dx} \) (đặt \(t = \sqrt {4 + x} \) )

Lời giải chi tiết:

Đổi biến  \(t = \sqrt {4 + x} \)

\(I = 2\int\limits_{\sqrt 6 }^3 {(1 + {1 \over {t - 2}} - {1 \over {t + 2}})dt}\)

\(= 2(t + \ln {{t - 2} \over {t + 2}})\left| {\matrix{3 \cr {\sqrt 6 } \cr} } \right. \)

\(= 2[3 - \sqrt 6 - \ln (25 - 10\sqrt 6 ){\rm{]}}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm Giải tích 12

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài