Bài 20 trang 219 SBT giải tích 12


Giải bài 20 trang 219 sách bài tập giải tích 12. Tính thể tích của vật thể tròn xoay khi quay các hình phẳng giới hạn bởi các đường sau quanh trục Ox:

Lựa chọn câu để xem lời giải nhanh hơn

Tính thể tích của vật thể tròn xoay khi quay các hình phẳng giới hạn bởi các đường sau quanh trục Ox:

LG a

y = x3 ; y = 1 và x = 3

Lời giải chi tiết:

Thể tích vật thể tròn xoay sinh ra bởi miền CED quay quanh trục Ox là hiệu của hai thể tích (V1 và V2) của hai vật thể tròn xoay tương ứng sinh ra khi miền ACEB và miền ACDB quay quanh trục Ox. Như vậy  V = V1 – V2 , trong đó :

\({V_1} = \pi \int\limits_1^3 {{x^6}} dx = {1 \over 7}\pi {x^7}\left| {\matrix{3 \cr 1 \cr} } \right. = {\pi \over 7}({3^7} - 1)\)

\({V_2} = \pi \int\limits_1^3 {dx = 2\pi }\)

\(\Rightarrow V = {V_1} - {V_2} = {\pi  \over 7}({3^7} - 15) = 310{2 \over 7}\pi \) (đơn vị thể tích)

LG b

\(y = {2 \over \pi }x;y = \sin x;x \in {\rm{[}}0;{\pi  \over 2}{\rm{]}}\)

Lời giải chi tiết:

Ta có V = V1 – V2 trong đó

\({V_1} = \pi \int\limits_0^{{\pi  \over 2}} {{{\sin }^2}xdx} \)

\(\begin{array}{l}
= \pi \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{1 - \cos 2x}}{2}dx} \\
= \dfrac{\pi }{2}\int\limits_0^{\dfrac{\pi }{2}} {\left( {1 - \cos 2x} \right)dx} \\
= \dfrac{\pi }{2}\left. {\left( {x - \dfrac{{\sin 2x}}{2}} \right)} \right|_0^{\dfrac{\pi }{2}}\\
= \dfrac{{{\pi ^2}}}{4}
\end{array}\)

\({V_2} = \pi \int\limits_0^{{\pi  \over 2}} {{{({2 \over \pi }x)}^2}dx }  \)

\( = \dfrac{4}{\pi }\int\limits_0^{\dfrac{\pi }{2}} {{x^2}dx}  = \dfrac{4}{\pi }.\left. {\dfrac{{{x^3}}}{3}} \right|_0^{\dfrac{\pi }{2}} = \dfrac{{{\pi ^2}}}{6}\)

\(V = {V_1} - {V_2} = {{{\pi ^2}} \over {12}}\) (đơn vị thể tích)

LG c

\(y = {x^\alpha },\alpha  \in {N^*};y = 0;x = 0\) và x = 1

Lời giải chi tiết:

Hình vẽ

\(V = \pi \int\limits_0^1 {{x^{2\alpha }}dx}  \)

\( = \pi .\left. {\dfrac{{{x^{2\alpha  + 1}}}}{{2\alpha  + 1}}} \right|_0^1 = \pi \left( {\dfrac{1}{{2\alpha  + 1}} - 0} \right) \) \(= \dfrac{\pi }{{2\alpha  + 1}}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm Giải tích 12

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài