Bài 1 trang 216 SBT giải tích 12


Giải bài 1 trang 216 sách bài tập giải tích 12. a) Xác định a, b, c, d để đồ thị của các hàm số:y = x2 + ax + b và y = cx + d cùng đi qua hai điểm M(1; 1) và B(3; 3).

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Xác định a, b, c, d để đồ thị của các hàm số: y = x2 + ax + b và y = cx + d cùng đi qua hai điểm M(1; 1) và B(3; 3).

Lời giải chi tiết:

a và b thỏa mãn hệ phương trình :

\(\left\{ {\matrix{{1 + a + b = 1} \cr {9 + 3a + b = 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{a + b = 0} \cr {3a + b = - 6} \cr} } \right. \Leftrightarrow\left\{ {\matrix{{a = - 3} \cr {b = 3} \cr} } \right.\)

c và d thỏa mãn hệ phương trình:

\(\left\{ {\matrix{{c + d = 1} \cr {3c + d = 3} \cr} \Leftrightarrow \left\{ {\matrix{{c = 1} \cr {d = 0} \cr} } \right.} \right.\)

LG b

Vẽ đồ thị của các hàm số ứng với các giá trị a, b, c và d tìm được trên cùng một mặt phẳng tọa độ. Tính diện tích của hình phẳng giới hạn bởi hai đường cong trên.

Lời giải chi tiết:

(H.90) Ta có hai hàm số tương ứng là:  y = x2 – 3x + 3  và y = x

Vậy \(S = \int\limits_1^3 {\left[ {x - \left( {{x^2} - 3x + 3} \right)} \right]dx} \) \( = \int\limits_1^3 {\left( { - {x^2} + 4x - 3} \right)dx}  \) \( = \left. {\left( { - \dfrac{{{x^3}}}{3} + 2{x^2} - 3x} \right)} \right|_1^3 \) \( = 0 - \left( { - \dfrac{4}{3}} \right) = \dfrac{4}{3}\) (đơn vị diện tích)

LG c

Tính thể tích của vật thể tròn xoay sinh bởi hình phẳng trên quay quanh trục hoành.

Lời giải chi tiết:

V = V1 – V2 , trong đó V1 là thể tích vật thể tròn xoay sinh ra do quay hình thang ACDB  quanh trục Ox , Vlà thể tích vật thể tròn xoay  sinh ra do quay hình thang cong ACDB quanh trục Ox.

Ta có:

\({V_1} = \pi \int\limits_1^3 {{x^2}dx}  = \pi .\left. {\dfrac{{{x^3}}}{3}} \right|_1^3 \) \(= \pi \left( {9 - \dfrac{1}{3}} \right) = \dfrac{{26\pi }}{3}\)

\({V_2} = \pi \int\limits_1^3 {{{\left( {{x^2} - 3x + 3} \right)}^2}dx} \) \( = \pi \int\limits_1^3 {\left( {{x^4} + 9{x^2} + 9 - 6{x^3} - 18x + 6{x^2}} \right)dx} \) \( = \pi \int\limits_1^3 {\left( {{x^4} - 6{x^3} + 15{x^2} - 18x + 9} \right)dx} \) \( = \left. {\pi \left( {\dfrac{{{x^5}}}{5} - \dfrac{{6{x^4}}}{4} + \dfrac{{15{x^3}}}{3} - \dfrac{{18{x^2}}}{2} + 9x} \right)} \right|_1^3\) \( = \pi \left( {\dfrac{{81}}{{10}} - \dfrac{{37}}{{10}}} \right) = \dfrac{{22\pi }}{5}\)

Vậy \(V = {{26} \over 3}\pi  - {{22} \over 5}\pi  = {{64} \over {15}}\pi \)   (đơn vị thể tích)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm Giải tích 12

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài