Bài 22 trang 219 SBT giải tích 12


Giải bài 22 trang 219 sách bài tập giải tích 12. Tìm tập hợp các điểm biểu diễn số phức z trên mặt phẳng tọa độ thỏa mãn các điều kiện:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập hợp các điểm biểu diễn số phức z trên mặt phẳng tọa độ thỏa mãn các điều kiện:

LG a

|z – i| = 1

Lời giải chi tiết:

Gọi \(z = x + yi\left( {x,y \in \mathbb{R}} \right)\) ta được:

\(\begin{array}{l}
\left| {x + yi - i} \right| = 1\\
\Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| = 1\\
\Leftrightarrow \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}} = 1\\
\Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = 1
\end{array}\)

Vậy tập hợp các điểm là đường tròn bán kính bằng 1 và tâm là điểm (0; 1)

LG b

|2 + z| < |2 – z|

Lời giải chi tiết:

Ta có: \(|2 + z{|^2} < |2 - z{|^2}\)

\(\Leftrightarrow |(2 + x) + iy{|^2} < |(2 - x) - iy{|^2}\)

\(\Leftrightarrow {(2 + x)^2} + {y^2} < {(2 - x)^2} + {( - y)^2}\)

\(\Leftrightarrow x < 0\)

Đó là tập hợp các số phức có phần thực nhỏ hơn 0, tức là nửa trái của mặt phẳng tọa độ không kể trục Oy.

LG c

\(2 \le |z - 1 + 2i| < 3\)

Lời giải chi tiết:

Gọi \(z = x + yi\left( {x,y \in \mathbb{R}} \right)\) ta được:

\(\begin{array}{l}2 \le \left| {x + yi - 1 + 2i} \right| < 3\\ \Leftrightarrow 2 \le \left| {\left( {x - 1} \right) + \left( {y + 2} \right)i} \right| < 3\\ \Leftrightarrow 2 \le \sqrt {{{\left( {x - 1} \right)}^2} + {{\left( {y + 2} \right)}^2}}  < 3\\ \Leftrightarrow 4 \le {\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} < 9\end{array}\)

Vậy tập hợp điểm cần tìm là hình vành khăn kể cả biên trong. Đó là những điểm (x; y) trên mặt phẳng tọa độ thỏa mãn điều kiện:  \(4 \le {(x - 1)^2} + {(y + 2)^2} < 9\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm Giải tích 12

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài