Bài 19 trang 219 SBT giải tích 12


Giải bài 19 trang 219 sách bài tập giải tích 12. Tính diện tích của hình phẳng giới hạn bởi các đường sau:...

Lựa chọn câu để xem lời giải nhanh hơn

Tính diện tích của hình phẳng giới hạn bởi các đường sau:

LG a

y = |x2 – 1| và y = 5 + |x|

Lời giải chi tiết:

Hai hàm số y = |x2 – 1| và y = 5 + |x| đều là hàm số chẵn. Miền cần tính diện tích được thể hiện ở hình 97. Do tính đối xứng qua trục tung, ta có:

\(S = 2\int\limits_0^3 {(5 + |x| - |{x^2} - 1|)dx}\)

\( = 2\left[ {\int\limits_0^1 {(5 + x - 1 + {x^2})dx + \int\limits_1^3 {(5 + x - {x^2} + 1)dx} } } \right]\) 

\( = 2\left[ {({1 \over 3}{x^3} + {1 \over 2}{x^2} + 4x)\left| {\matrix{1 \cr 0 \cr} + ( - {1 \over 3}{x^3} + {1 \over 2}{x^2} + 6x)\left| {\matrix{3 \cr 1 \cr} } \right.} \right.} \right]\)

\(= 24{1 \over 3}\) (đơn vị diện tích)

LG b

2y = x2 + x – 6  và 2y = -x2 + 3x + 6

Lời giải chi tiết:

Miền cần tính diện tích được thể hiện bởi Hình 98 (học sinh tự làm)

Như vậy, với mọi \(x \in ( - 2;3)\)  đồ thị của hàm số \(y =  - {1 \over 2}{x^2} + {3 \over 2}x + 3\) nằm phía trên đồ thị của hàm số \(y = {1 \over 2}{x^2} + {1 \over 2}x - 3\).

Vậy ta có:

\(S = \int\limits_{ - 2}^3 {\left[ {( - {1 \over 2}{x^2} + {3 \over 2}x + 3) - ({1 \over 2}{x^2} + {1 \over 2}x - 3)} \right]} dx\)

\(= \int\limits_{ - 2}^3 {( - {x^2} + x + 6)} dx = 20{5 \over 6}\)  (đơn vị diện tích)

LG c

\(y = {1 \over x} + 1,x = 1\) và tiếp tuyến với đường \(y = {1 \over x} + 1\)  tại điểm \((2;{3 \over 2})\)

Lời giải chi tiết:

Miền cần tính diện tích được thể hiện trên hình:

\(S = \int\limits_1^2 {\left[ {{1 \over x} + 1 - ( - {1 \over 4}x + 2)} \right]} dx\)

\(= \int\limits_1^2 {({1 \over x} + {1 \over 4}x - 1)dx = \ln 2 - {5 \over 8}} \)(đơn vị diện tích)

(vì tiếp tuyến với đồ thị của \(y = {1 \over x} + 1\) tại điểm \((2;{3 \over 2})\) có phương trình là  \(y = f'(2)(x - 2) + {3 \over 2} =  - {1 \over 4}x + 2\))

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm Giải tích 12

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài