Bài 18 trang 219 SBT giải tích 12


Giải bài 18 trang 219 sách bài tập giải tích 12. Tính:

Lựa chọn câu để xem lời giải nhanh hơn

Tính:

LG a

\(\int\limits_{ - 1}^2 {(5{x^2} - x + {e^{0,5x}})dx} \)

Lời giải chi tiết:

\(\begin{array}{l}
\int\limits_{ - 1}^2 {\left( {5{x^2} - x + {e^{0,5x}}} \right)dx} \\
= \left. {\left( {\dfrac{{5{x^3}}}{3} - \dfrac{{{x^2}}}{2} + \dfrac{1}{{0,5}}{e^{0,5x}}} \right)} \right|_{ - 1}^2\\
= \dfrac{{34}}{3} + 2e - \left( { - \dfrac{{13}}{6} + 2{e^{ - \dfrac{1}{2}}}} \right)\\
= \dfrac{{27}}{2} + 2e - \dfrac{2}{{\sqrt e }}
\end{array}\)

LG b

\(\int\limits_{0,5}^2 {(2\sqrt x  - {3 \over {{x^3}}} + \cos x)dx} \)

Lời giải chi tiết:

\(\begin{array}{l}
\int\limits_{0,5}^2 {\left( {2\sqrt x - \dfrac{3}{{{x^3}}} + \cos x} \right)dx} \\
= \int\limits_{0,5}^2 {\left( {2{x^{\dfrac{1}{2}}} - 3{x^{ - 3}} + \cos x} \right)dx} \\
= \left. {\left( {2.\dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} - 3.\dfrac{{{x^{ - 2}}}}{{ - 2}} + \sin x} \right)} \right|_{0,5}^2\\
= \left. {\left( {\dfrac{1}{3}{x^{\dfrac{3}{2}}} + \dfrac{3}{{2{x^2}}} + \sin x} \right)} \right|_{0,5}^2\\
= \dfrac{{7\sqrt 2 }}{3} - \dfrac{{45}}{8} + \sin 2 - \sin \dfrac{1}{2}
\end{array}\)

LG c

\(\int\limits_1^2 {{{dx} \over {\sqrt {2x + 3} }}} \)   (đặt \(t = \sqrt {2x + 3} \) )

Lời giải chi tiết:

Đặt \(t = \sqrt {2x + 3}  \Rightarrow {t^2} = 2x + 3\) \( \Rightarrow 2tdt = 2dx \Rightarrow dx = tdt\)

Đổi cận \(x = 1 \Rightarrow t = \sqrt 5 ,\) \(x = 2 \Rightarrow t = \sqrt 7 \)

Khi đó \(I = \int\limits_{\sqrt 5 }^{\sqrt 7 } {\dfrac{{tdt}}{t}}  = \int\limits_{\sqrt 5 }^{\sqrt 7 } {dt} \) \( = \left. t \right|_{\sqrt 5 }^{\sqrt 7 } = \sqrt 7  - \sqrt 5 \)

LG d

\(\int\limits_1^2 {\root 3 \of {3{x^3} + 4} {x^2}dx} \)  (đặt \(t = \root 3 \of {3{x^3} + 4} \))

Lời giải chi tiết:

Đổi biến  \(t = \root 3 \of {3{x^3} + 4} \)

\(\Rightarrow {t^3} = 3{x^3} + 4 \Rightarrow 3{t^2}dt = 9{x^2}dx \) \(\Rightarrow {x^2}dx = {1 \over 3}{t^2}dt\)

Ta có 

\(\eqalign{
& \int\limits_1^2 {\root 3 \of {3{x^3} + 4} } {x^2}dx = {1 \over 3}\int\limits_{\root 3 \of 7 }^{\root 3 \of {28} } {{t^3}dt} \cr & = {1 \over {12}}{t^4}\left| {\matrix{{\root 3 \of {28} } \cr {\root 3 \of 7 } \cr} } \right. = {{7\root 3 \of 7 (4\root 3 \of 4 - 1)} \over {12}} \cr} \) 

LG e

\(\int\limits_{ - 2}^2 {(x - 2)|x|dx} \)

Lời giải chi tiết:

\(\eqalign{
& \int\limits_{ - 2}^2 {(x - 2)|x|dx} \cr 
& = \int\limits_{ - 2}^0 {(2x - {x^2})dx + \int\limits_0^2 {({x^2} - 2x)dx} } \cr 
& = - {{20} \over 3} - {4 \over 3} = - 8 \cr} \)

LG g

\(\int\limits_1^0 {x\cos xdx} \)

Lời giải chi tiết:

\(\eqalign{& \int\limits_1^0 {x\cos xdx = x\sin x\left| {\matrix{0 \cr 1 \cr} } \right.} - \int\limits_1^0 {\sin xdx} \cr & = - \sin 1 + \cos x\left| {\matrix{0 \cr 1 \cr} } \right. = 1 - (\sin 1 + \cos 1) \cr} \)

LG h

\(\int\limits_{{\pi  \over 6}}^{{\pi  \over 2}} {{{1 + \sin 2x + \cos 2x} \over {\sin x + \cos x}}} dx\)

Lời giải chi tiết:

Ta có:  

\(\eqalign{
& 1 + \sin 2x + \cos 2x \cr 
& = 1 + 2\sin x\cos x + 2{\cos ^2}x - 1 \cr 
& = 2\cos x(\sin x + \cos x) \cr} \)

\(\begin{array}{l}
\Rightarrow I = \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} {\dfrac{{2\cos x\left( {\sin x + \cos x} \right)}}{{\sin x + \cos x}}dx} \\
= \int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}} {2\cos xdx} = 2\left. {\sin x} \right|_{\dfrac{\pi }{6}}^{\dfrac{\pi }{2}}\\
= 2\left( {1 - \dfrac{1}{2}} \right) = 1
\end{array}\)

LG i

\(\int\limits_0^{{\pi  \over 2}} {{e^x}\sin xdx} \)

Lời giải chi tiết:

Áp dụng phương pháp tính tích phân từng phần hai lần, cả hai lần đều đặt \({e^x}dx = dv \Rightarrow v = {e^x}\) . Ta có:

\(\eqalign{& I = \int\limits_0^{{\pi \over 2}} {{e^x}\sin xdx} = {e^x}\sin x\left| {\matrix{{{\pi \over 2}} \cr 0 \cr} } \right. - \int\limits_0^{{\pi \over 2}} {{e^x}\cos xdx} \cr & = {e^{{\pi \over 2}}} - \left[ {{e^x}\cos x\left| {\matrix{{{\pi \over 2}} \cr 0 \cr} + \int\limits_0^{{\pi \over 2}} {{e^x}\sin xdx} } \right.} \right] \cr & = {e^{{\pi \over 2}}} + 1 - I \cr & \Rightarrow I = {{{e^{{\pi \over 2}}} + 1} \over 2} \cr} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm Giải tích 12

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài