Bài 6 trang 216 SBT giải tích 12


Giải bài 6 trang 216 sách bài tập giải tích 12. Tìm a để hàm số đã cho đồng biến trên khoảng...

Đề bài

Tìm \(a \in (0;2\pi )\) để hàm số \(y = {1 \over 3}{x^3} - {1 \over 2}(1 + 2\cos a){x^2} \) \(+ 2x\cos a + 1\) đồng biến trên khoảng \((1; + \infty )\).

Lời giải chi tiết

Tập xác định:  D = R;  \(y' = {x^2} - (1 + 2\cos a)x + 2\cos a\)

\(y' = 0  \Leftrightarrow  \left[ {\matrix{{x = 1} \cr {x = 2\cos a} \cr} } \right.\)

Vì y’ > 0 ở ngoài khoảng nghiệm nên để hàm số đồng biến với mọi x > 1 thì \(2\cos a \le 1  \) \(\Leftrightarrow  \cos a \le {1 \over 2} \Rightarrow {\pi  \over 3} \le a \le {{5\pi } \over 3}\)   (vì \(a \in (0;2\pi )\) ).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí