Bài 4 trang 216 SBT giải tích 12


Giải bài 4 trang 216 sách bài tập giải tích 12. Tìm các đường tiệm cận của đồ thị các hàm số sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các đường tiệm cận của đồ thị các hàm số sau:

LG a

\(y = {{5x + 3} \over { - x + 2}}\)

Lời giải chi tiết:

Tiệm cận đứng: x = 2; Tiệm cận ngang: y = -5

LG b

\(y = {{ - 6x + 2} \over {x - 1}}\) 

Lời giải chi tiết:

Tiệm cận đứng: x = 1 ; Tiệm cận ngang: y = -6

LG c

\(y = {{2{x^2} + 8x - 9} \over {3{x^2} + x - 4}}\)

Lời giải chi tiết:

Ta có:  \(\displaystyle \mathop {\lim }\limits_{x \to  \pm \infty } {{2{x^2} + 8x - 9} \over {3{x^2} + x - 4}}\) \(\displaystyle = \mathop {\lim }\limits_{x \to  \pm \infty } {{{x^2}(2 + {8 \over x} - {9 \over {{x^2}}})} \over {{x^2}(3 + {1 \over x} - {4 \over {{x^2}}})}} \) \(\displaystyle = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{2 + \frac{8}{x} - \frac{9}{{{x^2}}}}}{{3 + \frac{1}{x} - \frac{4}{{{x^2}}}}} = \frac{2}{3}\)

Vậy đồ thị có đường tiệm cận ngang \(\displaystyle y = {2 \over 3}\)

Ta có  \(\displaystyle y = {{2{x^2} + 8x + 9} \over {(x - 1)(3x + 4)}}\)

Từ đó đồ thị có hai tiệm cận đứng là x = 1 và  \(\displaystyle x =  - {4 \over 3}\)

LG d

\(y = {{x + 2} \over { - 2x + 5}}\)

Lời giải chi tiết:

Tiệm cận đứng:  \(x = {5 \over 2}\) . Tiệm cận ngang:  \(y =  - {1 \over 2}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí