Bài 4.8 trang 157 SBT đại số và giải tích 11


Giải bài 4.8 trang 157 sách bài tập đại số và giải tích 11. Cho dãy số (un) xác định bởi công thức truy hồi...

Đề bài

Cho dãy số \(\displaystyle \left( {{u_n}} \right)\) xác định bởi công thức truy hồi

\(\displaystyle \left\{ \matrix{
{u_1} = 2 \hfill \cr 
{u_{n + 1}} = {{{u_n} + 1} \over 2}{\rm{ voi }}n \ge 1 \hfill \cr} \right.\)

Chứng minh rằng \(\displaystyle \left( {{u_n}} \right)\) có giới hạn hữu hạn khi \(\displaystyle n\to +\infty \). Tìm giới hạn đó.

Phương pháp giải - Xem chi tiết

Tìm công thức tổng quát và tính giới hạn

Lời giải chi tiết

\(\displaystyle \left\{ \matrix{
{u_1} = 2 \hfill \cr 
{u_{n + 1}} = {{{u_n} + 1} \over 2}{\rm\,\,{ vớii }}\,\,n \ge 1 \hfill \cr} \right.\)

Ta có:

\(\begin{array}{l}{u_1} = 2\\{u_2} = \dfrac{3}{2} = \dfrac{{2 + 1}}{2}\\{u_3} = \dfrac{5}{4} = \dfrac{{{2^2} + 1}}{{{2^2}}}\\{u_4} = \dfrac{9}{8} = \dfrac{{{2^3} + 1}}{{{2^3}}}\\{u_5} = \dfrac{{17}}{{16}} = \dfrac{{{2^4} + 1}}{{{2^4}}}\end{array}\)

Dự đoán \({u_n} = \dfrac{{{2^{n - 1}} + 1}}{{{2^{n - 1}}}}\,\left( * \right)\) với \(\forall n \in {\mathbb{N}^*}\)

Thật vậy,

+) Với \(n = 1\) ta có \({u_1} = \dfrac{{{2^{1 - 1}} + 1}}{{{2^{1 - 1}}}} = 2\) nên đúng.

+) Giả sử \(\left( * \right)\) đúng với \(n = k\), nghĩa là \({u_k} = \dfrac{{{2^{k - 1}} + 1}}{{{2^{k - 1}}}}\), ta cần chứng minh \({u_{k + 1}} = \dfrac{{{2^k} + 1}}{{{2^k}}}\)

Ta có:

\({u_{k + 1}} = \dfrac{{{u_k} + 1}}{2}\)\( = \dfrac{1}{2}\left( {{u_k} + 1} \right) = \dfrac{1}{2}\left( {\dfrac{{{2^{k - 1}} + 1}}{{{2^{k - 1}}}} + 1} \right)\) \( = \dfrac{1}{2}.\dfrac{{{2^{k - 1}} + 1 + {2^{k - 1}}}}{{{2^{k - 1}}}}\)  \( = \dfrac{{{{2.2}^{k - 1}} + 1}}{{{{2.2}^{k - 1}}}} = \dfrac{{{2^k} + 1}}{{{2^k}}}\)

\( \Rightarrow dpcm\).

Từ đó, 

\(\displaystyle \eqalign{
& \lim {u_n} = \lim {{{2^{n - 1}} + 1} \over {{2^{n - 1}}}} \cr 
& = \lim \left[ {1 + {{\left( {{1 \over 2}} \right)}^{n - 1}}} \right] \cr 
& = \lim \left[ {1 + 2.{{\left( {{1 \over 2}} \right)}^n}} \right] = 1 \cr}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.6 trên 5 phiếu

Các bài liên quan: - Bài 1: Giới hạn của dãy số

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài