Bài 4.11 trang 157 SBT đại số và giải tích 11


Đề bài

Cho dãy số \(\displaystyle \left( {{b_n}} \right)\) có số hạng tổng quát là \(\displaystyle {b_n} = \sin \alpha  + {\sin ^2}\alpha  + ... + {\sin ^n}\alpha \) với \(\displaystyle \alpha  \ne {\pi  \over 2} + k\pi \). Tìm giới hạn của \(\displaystyle \left( {{b_n}} \right)\).

Phương pháp giải - Xem chi tiết

Nhận xét \(\lim {b_n}\) là tổng cấp số nhân lùi vô hạn và sử dụng công thức đó tính toán.

Lời giải chi tiết

Dãy số: \(\displaystyle \sin \alpha ,...,{\sin ^n}\alpha ,...\) với \(\displaystyle \alpha  \ne {\pi  \over 2} + k\pi \), là một cấp số nhân lùi vô hạn, công bội \(\displaystyle q = \sin \alpha \) 

Vì \(\displaystyle \left| {\sin \alpha } \right| < 1\) với \(\displaystyle \alpha  \ne {\pi  \over 2} + k\pi \) nên \(\displaystyle \left( {{{\sin }^n}\alpha } \right)\) là một cấp số nhân lùi vô hạn.

Hơn nữa, \(\displaystyle {b_n} = \sin \alpha  + {\sin ^2}\alpha  + ... + {\sin ^n}\alpha  = {S_n}\)

Do đó, \(\displaystyle \lim {b_n} = \sin \alpha  + {\sin ^2}\alpha  + ... + {\sin ^n}\alpha  + ...\) \(\displaystyle = {{\sin \alpha } \over {1 - \sin \alpha }}\).

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.