Bài 4.11 trang 157 SBT đại số và giải tích 11


Giải bài 4.11 trang 157 sách bài tập đại số và giải tích 11. Cho dãy số (bn) có số hạng tổng quát là:...

Đề bài

Cho dãy số \(\displaystyle \left( {{b_n}} \right)\) có số hạng tổng quát là \(\displaystyle {b_n} = \sin \alpha  + {\sin ^2}\alpha  + ... + {\sin ^n}\alpha \) với \(\displaystyle \alpha  \ne {\pi  \over 2} + k\pi \). Tìm giới hạn của \(\displaystyle \left( {{b_n}} \right)\).

Phương pháp giải - Xem chi tiết

Nhận xét \(\lim {b_n}\) là tổng cấp số nhân lùi vô hạn và sử dụng công thức đó tính toán.

Lời giải chi tiết

Dãy số: \(\displaystyle \sin \alpha ,...,{\sin ^n}\alpha ,...\) với \(\displaystyle \alpha  \ne {\pi  \over 2} + k\pi \), là một cấp số nhân lùi vô hạn, công bội \(\displaystyle q = \sin \alpha \) 

Vì \(\displaystyle \left| {\sin \alpha } \right| < 1\) với \(\displaystyle \alpha  \ne {\pi  \over 2} + k\pi \) nên \(\displaystyle \left( {{{\sin }^n}\alpha } \right)\) là một cấp số nhân lùi vô hạn.

Hơn nữa, \(\displaystyle {b_n} = \sin \alpha  + {\sin ^2}\alpha  + ... + {\sin ^n}\alpha  = {S_n}\)

Do đó, \(\displaystyle \lim {b_n} = \sin \alpha  + {\sin ^2}\alpha  + ... + {\sin ^n}\alpha  + ...\) \(\displaystyle = {{\sin \alpha } \over {1 - \sin \alpha }}\).

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Giới hạn của dãy số

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài