Bài 3.53 trang 163 SBT hình học 11


Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD).

a) Chứng minh BD ⊥ SC.

b) Chứng minh (SAB) ⊥ (SBC).

c) Cho SA = (a√6)/3. Tính góc giữa SC và mặt phẳng (ABCD).

Lời giải chi tiết

a) Ta có: \(BD \bot AC\) (ABCD là hình vuông)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD\)

Do đó \(\left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} \right.\) \( \Rightarrow BD \bot \left( {SAC} \right) \Rightarrow BD \bot SC\)

b) Ta có: \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\)

Mà \(BC \subset \left( {SBC} \right)\) nên \(\left( {SBC} \right) \bot \left( {SAB} \right)\).

c) Vì \(SA \bot \left( {ABCD} \right)\) nên A là hình chiếu của S trên (ABCD).

Mà \(SC \cap \left( {ABCD} \right) = C\) nên AC là hình chiếu của SC trên (ABCD)

Do đó góc giữa SC và (ABCD) bằng góc giữa SC và AC hay là góc \(\widehat {SCA}\).

Ta có: \(AC = \sqrt {A{B^2} + B{C^2}} \) \( = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

Tam giác SAC vuông tại A nên \(\tan \widehat {SCA} = \dfrac{{SA}}{{AC}} \) \(= \dfrac{{a\sqrt 6 }}{3}:a\sqrt 2  = \dfrac{{\sqrt 3 }}{3}\) \( \Rightarrow \widehat {SCA} = {30^0}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài tập trắc nghiệm trang 164, 165, 166, 167, 168 SBT hình học 11

    Giải bài tập trắc nghiệm trang 164, 165, 166, 167, 168 sách bài tập hình học 11

  • Bài 3.52 trang 163 SBT hình học 11

    Giải bài 3.52 trang 163 sách bài tập hình học 11. Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc và các cạnh OA = OB = OC = a, gọi I là trung điểm BC...

  • Bài 3.51 trang 163 SBT hình học 11

    Giải bài 3.51 trang 163 sách bài tập hình học 11. Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a, ∠BAD = 60^0, SA = SB = SD = a...

  • Bài 3.50 trang 163 SBT hình học 11

    Giải bài 3.50 trang 163 sách bài tập hình học 11. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. a) Chứng minh tam giác SBC vuông...

  • Bài 3.49 trang 163 SBT hình học 11

    Giải bài 3.49 trang 163 sách bài tập hình học 11. Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC....

  • Bài 3.48 trang 162 SBT hình học 11

    Giải bài 3.48 trang 162 sách bài tập hình học 11. Hình thoi ABCD tâm O, có cạnh a và có OB = (a√3)/3. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại O ta lấy một điểm S sao cho SB = a...

  • Bài 3.47 trang 162 SBT hình học 11

    Giải bài 3.47 trang 162 sách bài tập hình học 11. Cho hai tia Ax và By vuông góc với nhau nhận AB làm đoạn vuông góc chung. Gọi M và N là hai điểm di động lần lượt trên Ax và By sao cho AM + BN = MN...

  • Bài 3.46 trang 162 SBT hình học 11

    Giải bài 3.46 trang 162 sách bài tập hình học 11. Cho hình lập phương ABCD.A’B’C’D’. Hãy tính góc của các cặp đường thẳng sau đây: a) AB’ và BC’ b) AC’ và CD’

  • Bài 3.45 trang 162 SBT hình học 11

    Giải bài 3.45 trang 162 sách bài tập hình học 11. Cho tứ diện ABCD. Chứng minh rằng AB vuông góc với CD khi và chỉ khi...

  • Bài 3.44 trang 162 SBT hình học 11

    Giải bài 3.44 trang 162 sách bài tập hình học 11. Hình chóp tam giác S.ABC có đáy là tam giác đều ABC cạnh 7a, có cạnh SC vuông góc với mặt phẳng đáy (ABC) và SC = 7a...

  • Bài 3.43 trang 161 SBT hình học 11

    Giải bài 3.43 trang 161 sách bài tập hình học 11. Trên mặt phẳng (α) cho hình vuông ABCD. Các tia Ax, By, Cz, Dt vuông góc với mặt phẳng alpha và nằm về một phía đối với...

  • Bài 3.42 trang 161 SBT hình học 11

    Giải bài 3.42 trang 161 sách bài tập hình học 11. Xét các khẳng định sau đây xem khẳng định nào đúng, khẳng định nào sai? a) Qua một điểm, có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước...

  • Bài 3.41 trang 161 SBT hình học 11

    Giải bài 3.41 trang 161 sách bài tập hình học 11. Trong các mệnh đề sau đây mệnh đề nào đúng? Mệnh đề nào sai? a) Cho hai đường thẳng a và b song song với nhau. Nếu có một đường thẳng d vuông góc với a thì d vuông góc với b...

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài