Bài 3.51 trang 163 SBT hình học 11


Giải bài 3.51 trang 163 sách bài tập hình học 11. Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a, ∠BAD = 60^0, SA = SB = SD = a...

Đề bài

Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a, ∠BAD = \(60^0\), SA = SB = SD = a.

a) Chứng minh (SAC) vuông góc với (ABCD).

b) Chứng minh tam giác SAC vuông.

c) Tính khoảng cách từ S đến (ABCD).

Lời giải chi tiết

a) Nhận xét: Tam giác ABD là tam giác đều.

Gọi H là hình chiếu vuông góc của S xuống mặt phẳng (ABD), ta có:

SA = SB = SD ⇒ H là tâm đường tròn ngoại tiếp tam giác ABD

⇒ H là trọng tâm tam giác ABD

⇒ H ∈ AC.

\( \Rightarrow SH \subset \left( {SAC} \right)\)

Mà \(SH \bot \left( {ABCD} \right)\) \( \Rightarrow \left( {SAC} \right) \bot \left( {ABCD} \right)\)

b) AO là đường cao trong tam giác đều ABD cạnh a nên \(AO = \dfrac{{a\sqrt 3 }}{2}\).

\( \Rightarrow AH = \dfrac{2}{3}AO\) \( = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\)

\( \Rightarrow SH = \sqrt {S{A^2} - A{H^2}} \) \( = \sqrt {{a^2} - \dfrac{{{a^2}}}{3}}  = \dfrac{{a\sqrt 6 }}{3}\)

Ta có: \(HC = AC - AH = 2AO - AH\) \( = 2.\dfrac{{a\sqrt 3 }}{2} - \dfrac{{a\sqrt 3 }}{3} = \dfrac{{2a\sqrt 3 }}{3}\)

\( \Rightarrow SC = \sqrt {S{H^2} + H{C^2}} \) \( = \sqrt {\dfrac{{6{a^2}}}{9} + \dfrac{{12{a^2}}}{9}}  = a\sqrt 2 \)

Tam giác SAC có:

\(S{A^2} + S{C^2} = {a^2} + 2{a^2} = 3{a^2}\) và \(A{C^2} = {\left( {2AO} \right)^2} = {\left( {2.\dfrac{{a\sqrt 3 }}{2}} \right)^2} = 3{a^2}\)

Do đó \(S{A^2} + S{C^2} = A{C^2}\) hay tam giác vuông tại S.

c) Ta có: \(SH \bot \left( {ABCD} \right)\) \( \Rightarrow d\left( {S,\left( {ABCD} \right)} \right) = SH = \dfrac{{a\sqrt 6 }}{3}\)

Loigiaihay.com


Bình chọn:
3.8 trên 5 phiếu
  • Bài 3.52 trang 163 SBT hình học 11

    Giải bài 3.52 trang 163 sách bài tập hình học 11. Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc và các cạnh OA = OB = OC = a, gọi I là trung điểm BC...

  • Bài 3.53 trang 163 SBT hình học 11

    Giải bài 3.53 trang 163 sách bài tập hình học 11. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD)...

  • Bài tập trắc nghiệm trang 164, 165, 166, 167, 168 SBT hình học 11

    Giải bài tập trắc nghiệm trang 164, 165, 166, 167, 168 sách bài tập hình học 11

  • Bài 3.50 trang 163 SBT hình học 11

    Giải bài 3.50 trang 163 sách bài tập hình học 11. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. a) Chứng minh tam giác SBC vuông...

  • Bài 3.49 trang 163 SBT hình học 11

    Giải bài 3.49 trang 163 sách bài tập hình học 11. Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC....

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí