Bài 3.52 trang 163 SBT hình học 11


Giải bài 3.52 trang 163 sách bài tập hình học 11. Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc và các cạnh OA = OB = OC = a, gọi I là trung điểm BC...

Đề bài

Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc và các cạnh OA = OB = OC = a, gọi I là trung điểm BC.

a) Chứng minh rằng: BC ⊥ (AOI), (OAI) ⊥ (ABC).

b) Tính góc giữa AB và mặt phẳng (AOI).

c) Tính góc giữa các đường thẳng AI và OB.

Lời giải chi tiết

a) Ta có: \(\left\{ \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right.\) \( \Rightarrow OA \bot \left( {OBC} \right) \Rightarrow OA \bot BC\)

Mà \(\Delta OBC\) vuông cân tại O nên \(OI \bot BC\)

Do đó \(\left\{ \begin{array}{l}BC \bot OA\\BC \bot OI\end{array} \right. \Rightarrow BC \bot \left( {OAI} \right)\).

Mà \(BC \subset \left( {ABC} \right)\) nên \(\left( {ABC} \right) \bot \left( {OAI} \right)\).

b) Ta có: \(\left\{ \begin{array}{l}BI \bot OI\\BI \bot OA\end{array} \right. \Rightarrow BI \bot \left( {OAI} \right)\)

\( \Rightarrow I\) là hình chiếu của B trên \(\left( {OAI} \right)\).

Mà \(BA \cap \left( {OAI} \right) = A\) nên \(AI\) là hình chiếu của \(AB\) trên \(\left( {OAI} \right)\).

Do đó góc giữa AB và (OAI) bằng góc giữa AB và AI hay là góc \(\widehat {BAI}\).

Tam giác ABC có: \(AB = BC = AC\) do các tam giác vuông cân OAB,OAC,OBC bằng nhau.

Do đó ABC là tam giác đều nên \(\widehat A = {60^0}\)

I là trung điểm BC nên AI là phân giác góc A nên \(\widehat {BAI} = \dfrac{1}{2}\widehat A = {30^0}\).

c) Gọi J là trung điểm OC, khi đó IJ//OB

Do \(OB \bot \left( {OAC} \right)\) nên \(IJ \bot \left( {OAC} \right) \Rightarrow IJ \bot AJ\) hay tam giác \(AIJ\) vuông tại J.

Vậy góc giữa AI và OB bằng góc giữa AI và IJ hay góc \(\widehat {AIJ}\).

Có \(IJ = \dfrac{1}{2}OB = \dfrac{a}{2}\).

\(AJ = \sqrt {O{A^2} + O{J^2}} \) \( = \sqrt {{a^2} + \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt 5 }}{2}\).

Tam giác AIJ vuông tại J nên \(\tan \widehat {AIJ} = \dfrac{{AJ}}{{IJ}} = \dfrac{{a\sqrt 5 }}{2}:\dfrac{a}{2} = \sqrt 5 \) \( \Rightarrow \widehat {AIJ} = {65^0}54'\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài 3.53 trang 163 SBT hình học 11

    Giải bài 3.53 trang 163 sách bài tập hình học 11. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD)...

  • Bài tập trắc nghiệm trang 164, 165, 166, 167, 168 SBT hình học 11

    Giải bài tập trắc nghiệm trang 164, 165, 166, 167, 168 sách bài tập hình học 11

  • Bài 3.51 trang 163 SBT hình học 11

    Giải bài 3.51 trang 163 sách bài tập hình học 11. Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a, ∠BAD = 60^0, SA = SB = SD = a...

  • Bài 3.50 trang 163 SBT hình học 11

    Giải bài 3.50 trang 163 sách bài tập hình học 11. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. a) Chứng minh tam giác SBC vuông...

  • Bài 3.49 trang 163 SBT hình học 11

    Giải bài 3.49 trang 163 sách bài tập hình học 11. Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC....

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí