Bài 1.51 trang 40 SBT đại số và giải tích 11


Giải bài 1.51 trang 40 sách bài tập đại số và giải tích 11. Giải các phương trình sau...

Đề bài

Giải phương trình sau

\(4\sin 3x+\sin 5x-2\sin x\cos 2x=0\)

Phương pháp giải - Xem chi tiết

Giải phương trình bằng cách sử dụng

- Công thức biến đổi tích thành tổng \(\sin x\cos y = \dfrac{1}{2}\left[ {\sin (x - y) + \sin (x + y)} \right]\).

- Công thức biến đổi tổng thành tích \(\sin x + \sin y = 2\sin \dfrac{{x + y}}{2}\cos \dfrac{{x - y}}{2}\).

- Giải phương trình \(\cos x=a\)

Nếu \(|a|>1\) phương trình vô nghiệm

Nếu \(|a|\le 1\) khi đó phương trình có nghiệm là

\(x=\pm\arccos a+k2\pi ,k \in \mathbb{Z}\).

Lời giải chi tiết

Ta có: \(4\sin 3x+\sin 5x-2\sin x\cos 2x=0\)

\(\Leftrightarrow 4\sin 3x+\sin 5x-\)

\(2\dfrac{1}{2}\left[ {\sin (x - 2x) + \sin (x + 2x)} \right]=0\)

\(\Leftrightarrow 4\sin 3x+\sin 5x-\)

\(\left[ {\sin (- x) + \sin 3x} \right]=0\)

\(\Leftrightarrow 3\sin 3x+\sin 5x+\sin x=0\)

\(\Leftrightarrow 3\sin 3x+\)

\(2\sin\dfrac{{5x + x}}{2}\cos \dfrac{{5x - x}}{2}=0\)

\(\Leftrightarrow 3\sin 3x+2\sin 3x\cos 2x=0\)

\(\Leftrightarrow \sin 3x(3+2\cos 2x)=0\)

\(\Leftrightarrow\left[ \begin{array}{l} \sin 3x = 0\\\cos 2x=-\dfrac{3}{2}<-1\text{(loại)}\end{array} \right. \)

\(\sin 3x=0\Leftrightarrow 3x = k\pi,k\in\mathbb{Z}\)

\(x=k\dfrac{\pi}{3},k\in\mathbb{Z}\)

Vậy phương trình có nghiệm là \(x=k\dfrac{\pi}{3},k\in\mathbb{Z}\).

 Loigiaihay.com


Bình chọn:
3.7 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí