Bài 1.39 trang 40 SBT đại số và giải tích 11


Giải bài 1.39 trang 40 sách bài tập đại số và giải tích 11. Tìm tập xác định của các hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của các hàm số

LG a

\(y=\dfrac{2-\cos x}{1+\tan {\left({x-\dfrac{\pi}{3}}\right)}}\)

Phương pháp giải:

ĐKXĐ của hàm số \(y=\dfrac{f(x)}{g(x)}\) là \(g(x)\ne 0\)

Lời giải chi tiết:

ĐKXĐ: \(\left\{ \begin{array}{l} \cos {\left({x-\dfrac{\pi}{3}}\right)}\ne0\\\tan {\left({x-\dfrac{\pi}{3}}\right)}\ne -1\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l} x-\dfrac{\pi}{3}\ne\dfrac{\pi}{2}+k\pi ,k \in \mathbb{Z}\\x-\dfrac{\pi}{3}\ne -\dfrac{\pi}{4}+k\pi ,k \in \mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l} x\ne\dfrac{5\pi}{6}+k\pi ,k \in \mathbb{Z}\\x\ne \dfrac{\pi}{12}+k\pi ,k \in \mathbb{Z}\end{array} \right. \)

Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash\)

\( \left[ {\left\{ {\dfrac{{5\pi }}{6} + k\pi ,k \in \mathbb{Z}} \right\} \cup \left\{ {\dfrac{\pi }{{12}} + k\pi ,k \in \mathbb{Z}} \right\}} \right]\).

Quảng cáo

Lộ trình SUN 2026

LG b

\(y=\dfrac{\tan x+\cot x}{1-\sin 2x}\)

Phương pháp giải:

ĐKXĐ của hàm số \(y=\dfrac{f(x)}{g(x)}\) là \(g(x)\ne 0\)

Lời giải chi tiết:

ĐKXĐ: \(\left\{ \begin{array}{l} \cos x\ne0\\\sin x\ne 0\\\sin 2x\ne 1\end{array} \right. \)

\(\Leftrightarrow\left\{ \begin{array}{l} \sin 2x\ne0\\\sin 2x\ne 1\end{array} \right. \)

\(\Leftrightarrow\left\{ \begin{array}{l} 2x\ne k\pi,k\in\mathbb{Z}\\2x\ne \dfrac{\pi}{2}+k2\pi,k\in\mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow\left\{ \begin{array}{l} x\ne k\dfrac{\pi}{2},k\in\mathbb{Z}\\x\ne \dfrac{\pi}{4}+k\pi,k\in\mathbb{Z}\end{array} \right. \)

Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash\)

\(\left[ {\left\{ {k\dfrac{\pi}{2} ,k \in \mathbb{Z}} \right\} \cup \left\{ {\dfrac{\pi}{4}+k\pi ,k \in \mathbb{Z}} \right\}} \right]\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí