Bài 1.3 trang 10 SBT hình học 10


Giải bài 1.3 trang 10 sách bài tập hình học 10. Cho tứ giác ABCD. Gọi M, N, P và Q lần lượt là trung điểm của các cạnh AB, BC, CD và DA.

Đề bài

Cho tứ giác \(ABCD\). Gọi \(M,N,P\) và \(Q\) lần lượt là trung điểm của các cạnh \(AB,BC,CD\) và\(DA\). Chứng minh \(\overrightarrow {NP}  = \overrightarrow {MQ} \)và \(\overrightarrow {PQ}  = \overrightarrow {NM} \).

Phương pháp giải - Xem chi tiết

Chứng minh \(MNPQ\) là hình bình hành, từ đố suy ra điều phải chứng minh.

Lời giải chi tiết

Ta thấy, \(MN\) là đường trung bình của tam giác \(ABC\) nên \(MN//AC\) và \(MN = \dfrac{1}{2}AC\).

\(PQ\) là đường trung bình của tam giác \(ADC\) nên \(PQ//AC\) và \(PQ = \dfrac{1}{2}AC\).

Do đó \(NM//PQ\) và \(MN = PQ\).

Vậy tứ giác \(MNPQ\) là hình bình hành nên \(\overrightarrow {NP}  = \overrightarrow {MQ} ,\overrightarrow {PQ}  = \overrightarrow {NM} \).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 6 phiếu

Các bài liên quan: - Bài 1: Các định nghĩa

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài