Bài 44 trang 63 SBT Hình học 12 Nâng cao>
Giải bài 44 trang 63 sách bài tập Hình học 12 Nâng cao. Trong tất cả các hình nón nội tiếp hình cầu bán kính R...
Đề bài
Trong tất cả các hình nón nội tiếp hình cầu bán kính R, tìm hình nón có diện tích xung quanh lớn nhất.
Với hình nón ấy, xét hình trụ nội tiếp hình nón. Tìm chiều cao của hình trụ đó, biết rằng thiết diện qua trục của hình trụ là hình vuông
Lời giải chi tiết
\( \bullet \) Xét mp(\(\alpha \)) qua trục SO của hình nón thì (\(\alpha \)) cắt hình nón theo tam giác cân SAB, (\(\alpha \)) cắt mặt cầu đã cho theo thiết diện là hình vuông MNPQ (hình vuông nội tiếp \(\Delta SAB).\)
Đặt \(\widehat {SAB}\) =\(\alpha \) thì SA = SB = \(2R\sin \alpha .\)
Và \(OB = SB\cos \alpha = R\sin 2\alpha .\) Từ đó diện tích xung quanh của hình nón là
\({S_{xq}} = \pi R.\sin 2\alpha .2R\sin \alpha = 4\pi {R^2}{\sin ^2}\alpha \cos \alpha \)
\(= 4\pi {R^2}(1 - {\cos ^2}\alpha )cos\alpha .\)
Đặt \(f(t) = (1 - {t^2})t\) với \(0 < t = \cos \alpha < 1.\)
Dễ thấy f(t) đạt giá trị lớn nhất khi và chỉ khi \(t = {1 \over {\sqrt 3 }} = \cos \alpha \Rightarrow \tan \alpha = \sqrt 2 .\)
\( \Rightarrow \tan \alpha = \sqrt 2 \). Khi ấy \({{SO} \over {OB}} = \tan \alpha = \sqrt 2 ,\) tức là \(SO = OB\sqrt 2 .( * )\)
Vậy hình nón có đường cao và bán kính đáy thỏa mãn điều kiện \(\left( * \right)\) nội tiếp mặt cầu đã chốc diện tích xung quanh lớn nhất.
Dễ thấy \({{S{O_1}} \over {SO}} = {{MQ} \over {AB}} = {x \over {AB}}\) (đặt MQ = MN = x).
Khi ấy \({{SO - x} \over {SO}} = {x \over {AB}} \Rightarrow SO - x = {{SO} \over {AB}}.x = {{\sqrt 2 } \over 2}x.\)
Từ đó \(SO = {x \over 2}\left( {2 + \sqrt 2 } \right).\) (1)
Mặt khác \(SO = OB\tan \alpha = R\sin 2\alpha .\tan \alpha = 2R{\sin ^2}\alpha .\) (2)
Từ (1) và (2) suy ra \(x = {{4R{{\sin }^2}\alpha } \over {2 + \sqrt 2 }} = {{4R.{2 \over 3}} \over {2 + \sqrt 2 }} = {{8R} \over {3\left( {2 + \sqrt 2 } \right)}} = {4 \over 3}R\left( {2 - \sqrt 2 } \right).\)
Vậy chiều cao của hình trụ phải tìm là \({{4R} \over 3}\left( {2 - \sqrt 2 } \right).\)
Loigiaihay.com
- Bài 43 trang 62 SBT Hình học 12 Nâng cao
- Bài 42 trang 62 SBT Hình học 12 Nâng cao
- Bài 41 trang 62 SBT Hình học 12 Nâng cao
- Bài 40 trang 62 SBT Hình học 12 Nâng cao
- Bài 39 trang 62 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao