Bài 43 trang 62 SBT Hình học 12 Nâng cao>
Giải bài 43 trang 62 sách bài tập Hình học 12 Nâng cao. Đường cao của hình nón gấp hai lần bán kính đáy của nó...
Đề bài
Đường cao của hình nón gấp hai lần bán kính đáy của nó. Tính tỉ số thể tích hình cầu ngoại tiếp và nội tiếp hình nón đó.
Lời giải chi tiết
Xét mp(P) qua trục SO của hình nón thì (P) cắt hình nón theo tam giác cân SAB, (P) cắt mặt cầu ngoại tiếp và nội tiếp hình nón theo các đường tròn có bán kính lần lượt là R và r.
Các đường tròn này ngoại tiếp và nội tiếp tam giác cân SAB.
Kí hiệu \({V_1},{V_2}\) là thể tích của các hình cầu đã nêu thì \({{{V_1}} \over {{V_2}}} = {\left( {{R \over r}} \right)^3}.\)
Đặt \(\widehat {SAB}\) =\(\alpha \) và gọi I là tâm đường tròn nội tiếp \(\Delta SAB\) thì
\(2R = \) \(\frac{{AB}}{{\sin \widehat {{\rm{AS}}B}}}\)=\({{AB} \over {\sin 2\alpha }}\) và \(r = IO = {{AB} \over 2}\tan {\alpha \over 2}.\)
Từ đó \({R \over r} = {1 \over {\sin 2\alpha \tan {\alpha \over 2}}}.\)
Mặt khác \(\tan \alpha = {{SO} \over {AO}} = 2,\) vậy
\(\eqalign{ & \sin 2\alpha = {{2\tan \alpha } \over {1 + {{\tan }^2}\alpha }} = {4 \over 5};2 = \tan \alpha = {{2\tan {\alpha \over 2}} \over {1 - {{\tan }^2}{\alpha \over 2}}} \cr & \Rightarrow \tan {\alpha \over 2} = {{\sqrt 5 - 1} \over 2} \cr} \)
( do \(\tan {\alpha \over 2} > 0)\).
Như vậy \({R \over r} = {{5\left( {\sqrt 5 + 1} \right)} \over 8},\) tức là \({{{V_1}} \over {{V_2}}} = {{125{{\left( {\sqrt 5 + 1} \right)}^3}} \over {512}} \)
Loigiaihay.com
- Bài 44 trang 63 SBT Hình học 12 Nâng cao
- Bài 42 trang 62 SBT Hình học 12 Nâng cao
- Bài 41 trang 62 SBT Hình học 12 Nâng cao
- Bài 40 trang 62 SBT Hình học 12 Nâng cao
- Bài 39 trang 62 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao