Bài 4 trang 50 SGK Hình học 12


Đề bài

Hình chóp \(S.ABC\) có một mặt cầu tiếp xúc với các cạnh \(SA, SB, SC\) và tiếp xúc với ba cạnh \(AB, BC, CA\) tại trung điểm của mỗi cạnh. Chứng minh rằng hình chóp đó là hình chóp tam giác đều.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Chóp tam giác đều là chóp có đáy là tam giác đều và các cạnh bên bằng nhau.

Lời giải chi tiết

Gọi \(M, N, P\) theo thứ tự là các tiếp điểm của mặt cầu với các cạnh \(SA, SB, SC\); \(D, E, F\) theo thứ tự là trung điểm của các cạnh \(AB, BC, CA\), các điểm \(D, E, F\) đồng thời cũng là tiếp điểm của mặt cầu với các cạnh \(AB, BC, CA\).

Ta có:

\(AD = AF\) (Tính chất hai tiếp tuyến cắt nhau)  \(\Rightarrow AB = AC\)

Tương tự: \(BD = BE \Rightarrow  BC = AB\)

\( \Rightarrow  AB = BC = CA \Rightarrow  △ABC\) là tam giác đều...                      (1)

Ta lại có \(AM = AD; BN = BD = AD\)

và \(SM = SN = SP\)

\( \Rightarrow  SM + AM = SN + NB\)

\( \Rightarrow  SA = SB\)

Chứng minh tương tự ta có: \(SA = SB = SC\).     (2)

Từ (1) và (2) suy ra hình chóp \(S.ABC\) là hình chóp tam giác đều.

Loigiaihay.com


Bình chọn:
4.1 trên 9 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.