Bài 12 trang 53 SGK Hình học 12


Giải bài 12 trang 53 SGK Hình học 12. Một hình hộp chữ nhật nội tiếp mặt cầu và có ba kích thước là a, b, c. Khi đó bán kính r của mặt cầu bằng:

Đề bài

Một hình hộp chữ nhật nội tiếp mặt cầu và có ba kích thước là \(\displaystyle a, b, c\). Khi đó bán kính \(\displaystyle r\) của mặt cầu bằng:

(A) \(\displaystyle {1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \);

(B) \(\displaystyle \sqrt {{a^2} + {b^2} + {c^2}} \);

(C) \(\displaystyle \sqrt {2({a^2} + {b^2} + {c^2})} \);

(D) \(\displaystyle {{\sqrt {{a^2} + {b^2} + {c^2}} } \over 3}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Mặt cầu ngoại tiếp hình hộp chữ nhật có tâm chính là tâm của hình hộp chữ nhật.

Lời giải chi tiết

Gọi \(O\) là tâm của hình hộp chữ nhật \(ABCD.A'B'C'D'\) có các kích thước \(AB = a;\,\,AD = b;\,\,AA' = c\) thì \(O\) chính là tâm mặt cầu ngoại tiếp hình hộp chữ nhật đó. Do đó bán kính của mặt cầu này là \(R = OA = \frac{1}{2}AC'\).

Xét tam giác vuông \(A'B'C'\) có: \(A'C{'^2} = A'B{'^2} + B'C{'^2} = {a^2} + {b^2}\)

\(AA' \bot \left( {A'B'C'D'} \right) \Rightarrow AA' \bot A'C' \Rightarrow \Delta AA'C'\) vuông tại A', do đó:

\(\begin{array}{l}
AC' = \sqrt {AA{'^2} + A'C{'^2}} = \sqrt {{a^2} + {b^2} + {c^2}} \\
\Rightarrow R = \frac{1}{2}\sqrt {{a^2} + {b^2} + {c^2}}
\end{array}\)

Chọn (A).

Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài