Bài 13 trang 53 SGK Hình học 12


Đề bài

Một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt của một hình lập phương cạnh \(a\). Thể tích của khối trụ đó là:

(A) \({1 \over 2}a^3π\) ;                         (B) \({1 \over 4}a^3π\) ;

(C) \({1 \over 3}a^3π\) ;                         (D) \(a^3π\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt của một hình lập phương cạnh \(a\), khi đó hình trụ có chiều cao \(h=\) và đáy là đường tròn nội tiếp hình vuông cạnh (a\).

Công thức tính thể tích khối trụ: \(V = \pi {R^2}h\), trong đó \(R;h\) lần lượt là bán kính đáy và chiều cao của khối trụ.

Lời giải chi tiết

Giả sử ta vẽ được một hình trụ thỏa mãn yêu cầu bài toán như trên, ta có chiều cao của khối trụ \(h=a\) và bán kính đáy của khối trụ \(R = \dfrac{a}{2}\).

\( \Rightarrow V = \pi {R^2}h = \pi .\dfrac{{{a^2}}}{4}.a = \dfrac{1}{4}{a^3}\pi \)

Chọn (B)

Loigiaihay.com


Bình chọn:
3.6 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.