Biểu thức nào dưới đây có giá trị khác với các biểu thức còn lại?
A. \({\left( { - \sqrt 5 } \right)^2}\)
B. \(\sqrt {{5^2}} \)
C. \(\sqrt {{{\left( { - 5} \right)}^2}} \)
D. \( - {\left( {\sqrt 5 } \right)^2}\)
Có bao nhiêu số tự nhiên x để \(\sqrt {16 - x} \) là số nguyên?
A. 2
B. 3
C. 4
D. 5
Giá trị của biểu thức \(\sqrt {16} + \sqrt[3]{{ - 64}}\) bằng
A. 0
B. -2
Đẳng thức nào sau đây không đúng?
A. \(\sqrt {16} + \sqrt {144} = 16\)
B. \(\sqrt {0,64} .\sqrt 9 = 2,4\)
C. \(\sqrt {{{( - 18)}^2}} :\sqrt {{6^2}} = 3\)
D. \(\sqrt {{{( - 3)}^2}} - \sqrt {{7^2}} = - 10\)
Biết rằng \({\left( {2,6} \right)^2} = 6,76\), giá trị của biểu thức \(\sqrt {0,0676} \) bằng
A. 0,0026
B. 0,026
C. 0,26
D. 2,6
Rút gọn biểu thức \(\sqrt {9a} - \sqrt {16a} + \sqrt {64a} \) với \(a \ge 0\), ta có kết quả
A. \(15\sqrt a \)
B. 15a
C. \(7\sqrt a \)
D. 7a
Cho a = \(2\sqrt 3 + \sqrt 2 \), b = \(3\sqrt 2 - 2\sqrt 3 \). Rút gọn biểu thức \(\sqrt 3 a - \sqrt 2 b\), ta có kết quả
A. \(3\sqrt 6 \)
B. \( - \sqrt 6 \)
C. \(6\sqrt 3 \)
D. \(12 - \sqrt 6 \)
Trục căn thức ở mẫu biểu thức \(\frac{{\sqrt 6 - \sqrt 3 }}{{\sqrt 3 a}}\) với a > 0, ta có kết quả
A. \(\frac{{\sqrt 2 - 1}}{{\sqrt a }}\)
B. \(\frac{{\left( {\sqrt 6 - \sqrt 3 } \right)\sqrt a }}{{3a}}\)
C. \(\frac{{\left( {\sqrt 2 - 1} \right)\sqrt a }}{a}\)
D. \(\sqrt {2a} - \sqrt a \)
Kết quả của phép tính \(\sqrt {27} :\sqrt 6 .2\sqrt {18} \) là
A. 12
B. 18
C. 72
D. 144
Rút gọn biểu thức \(\frac{1}{{2\sqrt a + \sqrt 2 }} - \frac{1}{{2\sqrt a - \sqrt 2 }}\) với \(a \ge 0\), \(a \ne \frac{1}{2}\), ta có kết quả
A. \(\frac{{\sqrt 2 }}{{1 - 2a}}\)
B. \(\frac{{\sqrt 2 }}{{2a - 1}}\)
C. \(\frac{{\sqrt a }}{{2a - 1}}\)
D. \(\frac{{\sqrt 2 }}{{1 - a}}\)
Tìm x, biết:
a) x2 = 10
b) \(\sqrt x = 8\)
c) x3 = - 0,027
d) \(\sqrt[3]{x} = - \frac{2}{3}\)
Biết rằng 1 < a < 5, rút gọn biểu thức
A = \(\sqrt {{{\left( {a - 1} \right)}^2}} + \sqrt {{{\left( {a - 5} \right)}^2}} \).
Trục căn thức ở mẫu các biểu thức sau:
a) \(\frac{{4 - 2\sqrt 6 }}{{\sqrt {48} }}\)
b) \(\frac{{3 - \sqrt 5 }}{{3 + \sqrt 5 }}\)
c) \(\frac{a}{{a - \sqrt a }}\) với a > 0, a \( \ne \)1
Biết rằng a > 0, b > 0 và ab = 16. Tính giá trị của biểu thức \(A = a\sqrt {\frac{{12b}}{a}} + b\sqrt {\frac{{3a}}{b}} \).
Tính \(\frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} - \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}\).
Một trục số được vẽ trên lưới ô vuông như Hình 1.
a) Đường tròn tâm O bán kính OA cắt trục số tại hai điểm M và N. Hai điểm M và N biểu diễn hai số thực nào?
b) Đường tròn tâm B bán kính BC cắt trục số tại hai điểm P và Q. Hai điểm P và Q biểu diễn hai số thực nào?
Cho hình hộp chữ nhật có chiều dài \(\sqrt {12} \)cm, chiều rộng\(\sqrt 8 \)cm, chiều cao \(\sqrt 6 \) như Hình 2.
a) Tính thể tích của hình hộp chữ nhật đó.
b) Tính diện tích xung quanh của hình hộp chữ nhật đó.
Rút gọn các biểu thức sau:
a) \(\left( {a\sqrt {\frac{3}{a}} + 3\sqrt {\frac{a}{3}} + \sqrt {12{a^3}} } \right):\sqrt 3 a\) với a > 0
b) \(\frac{{1 - a}}{{1 + \sqrt a }} + \frac{{1 - a\sqrt a }}{{1 - \sqrt a }}\) với \(a \ge 0;a \ne 1\)
Cho biểu thức \(P = \left( {\frac{1}{{a + \sqrt a }} - \frac{1}{{\sqrt a + 1}}} \right):\frac{{\sqrt a - 1}}{{a + 2\sqrt a + 1}}\) với a > 0 và a \( \ne \)1.
a) Rút gọn biểu thức P.
b) Tính giá trị của P khi a = 0,25
Rút gọn biểu thức \(\sqrt {{{\left( { - a} \right)}^2}} - \sqrt {9{a^2}} \) với a < 0, ta có kết quả
A. – 4a
B. 2a
C. 4a
D. – 2a
Trong các giá trị sau của a, giá trị nào làm cho \(\sqrt {24a} \) là số tự nhiên?
A. 4
B. 6
C. 8
D. 12
Số \(\sqrt {79} \) nằm giữa hai số tự nhiên liên tiếp là
A. 7 và 8
B. 8 và 9
C. 9 và 10
D. 78 và 80
Rút gọn biểu thức \(\sqrt {18.80} .\sqrt {30} \), ta có kết quả
A. \(120\sqrt 3 \)
B. \(120\sqrt 6 \)
C. \(120\sqrt {15} \)
D. 360
Trong Hình 1, biết hai hình vuông có diện tích lần lượt là 108 cm2 và 96 cm2. Diện tích của hình chữ nhật ABCD là
A. \(48\sqrt 3 \) cm2
B. \(24\sqrt 6 \) cm2
C. \(72\sqrt 2 \) cm2
D. 144 cm2
Rút gọn biểu thức \(\frac{{a - 81b}}{{\sqrt a - 9\sqrt b }}\) với \(a \ge 0,b \ge 0\) và \(a \ne 81b\), ta có kết quả
A. \(\sqrt a + 3\sqrt b \)
B. \(\sqrt a - 3\sqrt b \)
C. \(\sqrt a + 9\sqrt b \)
D. \(\sqrt a - 9\sqrt b \)
Rút gọn biểu thức \(\frac{{\sqrt {ab} }}{{b\sqrt a + a\sqrt b }}\) với \(a > b > 0\), ta có kết quả
A. \(\frac{{\sqrt a + \sqrt b }}{{a + b}}\)
B. \(\frac{{\sqrt a + \sqrt b }}{{a - b}}\)
C. \(\frac{{\sqrt a - \sqrt b }}{{a - b}}\)
D. \(\frac{1}{{\sqrt a - \sqrt b }}\)
Rút gọn biểu thức \(\frac{{\sqrt {20} }}{{\sqrt {24} }}.\frac{{\sqrt 8 }}{{\sqrt {10} }}:\left( { - \sqrt {\frac{2}{9}} } \right)\), ta có kết quả
A. \( - \sqrt 2 \)
B. \( - \frac{{3\sqrt 2 }}{2}\)
C. \( - \frac{{2\sqrt 3 }}{3}\)
D. \( - \sqrt 3 \)
Rút gọn biểu thức \(\sqrt {245} - \sqrt {75} + \sqrt {45} - \sqrt {12} \) nhận được biểu thức có dạng \(a\sqrt 5 + b\sqrt 3 \). Giá trị của a – b là
A. 17
C. 9
D. 10
Động năng W (J) của vật có khối lượng m (kg) chuyển động với tốc độ v (m/s) được tính theo công thức \({\rm{W}} = \frac{1}{2}m{v^2}\). Công thức nào sau đây cho phép tính tốc độ theo động năng và khối lượng của vật?
A. \({\rm{v}} = \frac{{2{\rm{W}}}}{m}\)
B. \({\rm{v}} = \sqrt {\frac{{\rm{W}}}{{2m}}} \)
C. \(v = \frac{{\sqrt {2W} }}{m}\)
D. \({\rm{v}} = \sqrt {\frac{{2{\rm{W}}}}{m}} \)
Chọn đúng hoặc sai cho mỗi ý a), b), c), d).
a) \( - \sqrt {{a^2}} = a\)
b) \(\sqrt {{{\left( {10a} \right)}^2}} = 10a\)
c) \(\sqrt {4{a^2}} = - 4a\)
d) \(\sqrt {\frac{{{a^2}}}{{16}}} = - \frac{a}{4}\)
a) Chiều dài của cạnh AB là \(2\sqrt 2 \) m.
b) Chênh lệch chiều dài giữa hai cạnh AB và CD là \(\sqrt {10} \) m.
c) Diện tích của bức tường là \(10\sqrt 6 \) m2.
d) Chiều dài cạnh AD là \(\sqrt {26} \)m.
Biết rằng diện tích của hình tròn lớn bằng tổng diện tích của hai hình tròn nhỏ có bán kính lần lượt là 2 cm và 3 cm. Tính bán kính r của hình tròn lớn (kết quả làm tròn đến hàng phần mười của xăngtimet).
a) Sắp xếp ba số \(2\sqrt 7 ,3\sqrt 7 \) và 7 theo thứ tự tăng dần.
b) Rút gọn biểu thức \(A = \sqrt {{{\left( {7 - 2\sqrt 7 } \right)}^2} + {{\left( {7 - 3\sqrt 7 } \right)}^2}} \).
Tìm số tự nhiên n thoả mãn n < \(\sqrt {37} \) < n + 1.
Giá trị trung bình của ba số a, b và c được tính bằng công thức \(A = \sqrt[3]{{abc}}\). Tính giá trị trung bình nhân của các số
a) 3; 8 và 9;
b) -1; 40 và 25.
Cho tam giác ABC vuông tại A, \(AB = \sqrt 2 ,AC = \sqrt 6 \). Tính giá trị đúng (không làm trò) của
a) Chu vi và diện tích tam giác ABC.
b) Độ dài đường cao AH của tam giác ABC.
Tính giá trị của các biểu thức:
a) \(\sqrt {9 + \sqrt {17} } .\sqrt {9 - \sqrt {17} } \);
b) \({\left( {\sqrt {5 + \sqrt {21} } + \sqrt {5 - \sqrt {21} } } \right)^2}\).
Rút gọn các biểu thức (biết a> 0, b > 0):
a) \(\sqrt {\frac{a}{b}} + \sqrt {\frac{b}{a}} - \frac{{\sqrt {ab} }}{a}\);
b) \(\left( {a - 2\sqrt {\frac{b}{a}} } \right)\left( {a + \frac{2}{a}\sqrt {ab} } \right)\).
a) Chứng minh rằng \(\frac{1}{{\sqrt {n + 1} + \sqrt n }} = \sqrt {n + 1} - \sqrt n \) với mọi số tự nhiên n.
b) Tính \(\frac{1}{{\sqrt 1 + \sqrt 2 }} + \frac{1}{{\sqrt 2 + \sqrt 3 }} + ... + \frac{1}{{\sqrt {99} + \sqrt {100} }}.\)
Cho biểu thức P = \(\left( {\frac{{\sqrt a + 1}}{{\sqrt a - 1}} - \frac{{\sqrt a - 1}}{{\sqrt a + 1}} + \frac{{4 + 4a}}{{1 - {a^2}}}} \right)\left( {\sqrt a - \frac{1}{{\sqrt a }}} \right)\) với a > 0, \(a \ne 1\).
b) Tìm giá trị của a để P = 2
Thời gian T (s) để con lắc trên đồng hồ quả lắc thực hiện được một dao động (thời gian giữa hai tiếng “tích tắc” liên tiếp) gọi là chu kì con lắc và được tính bởi công thức \(T = 2\pi \sqrt {\frac{l}{g}} \), trong đó l (m) là chiều dài của dây, g = 9,8 m/s2.
a) Tính chu kì của con lắc khi chiều dài của dây là l = 0,5 m (kết quả làm tròn đến hàng phần nghìn của giây).
b) Chiều dài của dây phải bằng bao nhiêu thì con lắc có chu kì T = 2 s (kết quả làm tròn đến hàng phần nghìn của mét)?
c) Nếu chiều dài của dây tăng lên gấp 2 lần thì chu kì của con lắc thay đổi như thế nào?