Diện tích S của hình tròn được tính bởi công thức \(S = \pi {R^2}\).
Trong đó R là bán kính của hình tròn và \(\pi \approx 3,14.\)
a) Tính diện tích của hình tròn với R = 10 cm.
b) Diện tích S có phải là hàm số của biến số R không?
a) Xác định hệ số của x2 trong các hàm số sau: y = 0,75x2 ; y = - 3x2 ; \(y = \frac{1}{4}{x^2}\)
b) Với mỗi hàm số đã cho ở câu a), tính giá trị của y khi x = - 2; x = 2.
Gọi x (cm) là chiều dài cạnh của một viên gạch lát nền hình vuông.
a) Viết công thức tính diện tích S (cm2) của viên gạch đó.
b) Tính S khi x = 20; x = 30; x = 60.
Cho hàm số \(y = \frac{1}{2}{x^2}\). Hoàn thành bảng giá trị sau:
Lập bảng giá trị của hai hàm số \(y = \frac{1}{4}{x^2}\)và \(y = - \frac{1}{4}{x^2}\) với x lần lượt bằng – 4; -2; 0; 2; 4.
Một vật rơi tự do từ độ cao 125 m so với mặt đất. Quãng đường chuyển động s (m) của vật phụ thuộc và thời gian t (giây) được cho bởi công thức s = 5t2 .
a) Sau 2 (giây), vật này cách mặt đất bao nhiêu mét? Tương tự, sau 3 giây vật này cách mặt đất bao nhiêu mét?
b) Sau bao lâu thì vật này tiếp đất?
Cho hàm số \(y = {x^2}\). Ta lập bảng giá trị sau:
Từ bảng trên, ta lấy các điểm A(-3;9), B(-2;4), C(-1;1), O(0;0), C’(1;1), B’(2;4), A’(3;9) trên mặt phẳng tọa độ Oxy. Đồ thị của hàm số \(y = {x^2}\) là một đường cong đi qua các điểm nêu trên và có dạnh như Hình 2.
Từ đồ thị ở Hình 2, hãy trả lời các câu hỏi sau:
a) Đồ thị của hàm số có vị trí như thế nào so với trục hoành?
b) Có nhận xét gì về vị trí của các cặp điểm A và A’, B và B’, C và C’ so với trục tung?
c) Điểm nào là điểm thấp nhất của đồ thị?
Cho hàm số \(y = - \frac{3}{2}{x^2}\).
a) Lập bảng giá trị của hàm số khi x lần lượt nhận các giá trị -2; -1;0;1;2.
b) Vẽ đồ thị của hàm số. Có nhận xét gì về đồ thị của hàm số đó?
Vẽ đồ thị hàm số y = 2x2.
Động năng (tính bằng J) của một quả bưởi nặng 1 kg rơi với tốc độ v (m/s) được tính bằng công thức \(K = \frac{1}{2}{v^2}\).
a) Tính động năng của quả bưởi đạt được khi nó rơi với tốc độ lần lượt là 3 m/s, 4 m/s.
b) Tính tốc độ rơi của quả bưởi tại thời điểm quả bưởi đạt được động năng 32 J.
Cho hàm số y = - x2.
a) Lập bảng giá trị của hàm số.
b) Vẽ đồ thị hàm số.
Cho hàm số y = \(\frac{1}{2}\)x2.
a) Vẽ đồ thị hàm số.
b) Trong các điểm A(-6;-8), B(6;8), C \(\left( {\frac{2}{3};\frac{2}{9}} \right)\), điểm nào thuộc đồ thị của hàm số trên?
Cho hai hàm số \(y = \frac{1}{4}{x^2}\)và \(y = - \frac{1}{4}{x^2}\). Vẽ đồ thị của hai hàm số đã cho trên cùng một mặt phẳng tọa độ Oxy.
Cho hàm số \(y = a{x^2}\left( {a \ne 0} \right)\).
a) Tìm a, biết đồ thị của hàm số đi qua điểm M(2;6).
b) Vẽ đồ thị của hàm số với a vừa tìm được.
c) Tìm các điểm thuộc đồ thị trên có tung độ y = 9.
Cho một hình lập phương có độ dài cạnh là x (cm).
a) Viết công thức tính diện tích toàn phần S (cm2) của hình lập phương theo x.
b) Lập bảng giá trị của hàm số S khi x lần lượt nhận các giá trị: \(\frac{1}{2}\); 1; \(\frac{2}{3}\); 2; 3.
c) Tính độ dài cạnh của hình lập phương, biết S = 54 cm2.
Khi gió thổi vuông góc vào cánh buồm của một con thuyền thì lực F(N) của nó tỉ lệ thuận với bình phương tốc độ v (m/s) của gió, tức là F = av2 (a là hằng số). Biết rằng khi tốc độ của gió bằng 3 m/s thì lực tác động lên cánh buồm bằng 180 N.
a) Tính hằng số a.
b) Với a vừa tìm được, tính lực F khi v = 15 m/s và khi v = 26 m/s.
c) Biết rằng cánh buồm chỉ có thể chịu được một lực tối đa là 14580 N, hỏi con thuyền có thể đi được trong gió bão với tốc độ gió 90 km/h hay không?