Nêu nhận xét về số điểm chung của đường thẳng a và đường tròn (O) trong mỗi hình sau:
Cho đường tròn (J; 5 cm) và đường thẳng c. Gọi K là chân đường vuông góc vẽ từ J xuống c, d là độ dài của đoạn thẳng JK. Xác định vị trí tương đối của đường thẳng c và đường tròn (J; 5 cm) trong mỗi trường hợp sau:
a) d = 4 cm
b) d = 5 cm
c) d = 6 cm
Một diễn viên xiếc đi xe đạp một bánh trên sợi dây cáp căng được cố định ở hai đầu dây. Biết đường kính bánh xe là 72 cm, tính khoảng cách từ trục bánh xe đến dây cáp.
Cho điểm A nằm trên đường tròn (O; R), đường thẳng d đi qua A và vuông góc với OA. Gọi M là một điểm trên d (M khác A).
a) Giải thích tại sao ta có OA = R và OM > R.
b) Giải thích tại sao d và (O) không thể có điểm chung nào khác ngoài A.
Cho tam giác ABC có đường cao AH (Hình 8). Tìm tiếp tuyến của đường tròn (A; AH) tại H.
Một diễn viên xiếc đi xe đạp trên một sợi dây cáp căng (Hình 9). Ta coi sợi dây là tiếp tuyến của mỗi bánh xe, xác định các tiếp điểm.
Cho đường tròn O và hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại điểm A (Hình 10).
a) Chứng minh hai tam giác ABO và ACO bằng nhau.
b) Tìm các đoạn thẳng bằng nhau và các góc bằng nhau trong Hình 10.
Cho điểm M nằm ngoài đường tròn (I; 6 cm) và ME, MF là hai tiếp tuyến của đường tròn này tại E và F. Cho biết \(\widehat {EMF} = {60^o}\).
a) Tính số đo \(\widehat {EMI}\) và \(\widehat {EIF}\) .
b) Tính độ dài MI.
Tìm giá trị x trong Hình 12.
Bánh đà của một động cơ được thiết kế có dạng một đường tròn tâm O, bán kính 15 cm được kéo bởi một dây curoa. Trục của mô tơ truyền lực được biểu diễn bởi điểm M (Hình 13). Cho biết khoảng cách OM là 35 cm.
a) Tính độ dài của hai đoạn dây curoa MA và MB (kết quả làm tròn đến hàng phần mười).
b) Tính số đo \(\widehat {AMB}\) tạo bởi hai tiếp tuyến AM, BM và số đo \(\widehat {AOB}\) (kết quả làm tròn đến phút).
Trong Hình 14, MB, MC lần lượt là tiếp tuyến của đường tròn (O) tại B, C; \(\widehat {COB} = {130^o}\). Tính số đo \(\widehat {CMB}\) .
Quan sát Hình 15. Biết AB, AC lần lượt là tiếp tuyến của đường tròn (O) tại B, C. Tính giá trị của x.
Trong Hình 16, AB = 9; BC = 12; AC = 15 và BC là đường kính của đường tròn (O). Chứng minh AB là tiếp tuyến của đường tròn (O).
Cho tam giác ABC có đương tròn (O) nằm trong và tiếp xúc với ba cạnh của tam giác. Biết AM = 6 cm; BP = 3 cm; CE = 8 cm (Hình 17). Tính chu vi tam giác ABC.
Cho đường tròn (O; R) có đường kính AB. Vẽ dây AC sao cho AC = R. Gọi I là trung điểm dây AC. Đường thẳng OI cắt tiếp tuyến Ax tại M. Chứng minh rằng:
a) \(\widehat {ACB}\) có số đo bằng 90o, từ đó suy ra độ dài của BC theo R;
b) OM là tia phân giác của \(\widehat {COA}\).
c) MC là tiếp tuyến của đường tròn (O; R).
Cho đường tròn (O; 5 cm) , điểm M nằm ngoài (O) sao cho hai tiếp tuyến MA và MB (A; B là hai tiếp điểm) vuông góc với nhau tại M.
a) Tính độ dài MA và MB.
b) Qua giao điểm I của đoạn thẳng MO và đường tròn (O), vẽ một tiếp tuyến cắt OA, OB lần lượt tại C, D. Tính độ dài CD.
Cho đường tròn (O) , điểm M nằm ngoài (O) sao cho hai tiếp tuyến MA và MB (A; B là hai tiếp điểm) thoả mãn \(\widehat {AMB} = {60^o}\). Biết chu vi tam giác MAB là 18 cm, tính độ dài dây AB.
Trong Hình 18, AB là tiếp tuyến của đường tròn (O) tại B.
a) Tính bán kính r của đường tròn (O).
b) Tính chiều dài cạnh OA của tam giác ABO.
Cho ba điểm A, B, C cùng nằm trên đường tròn (O) sao cho AC đi qua O. Vẽ đoạn thẳng DE tiếp xúc với (O) tại A. Cho biết \(\widehat {BAD} = {78^o}\). Tính số đo \(\widehat {BCA}\).
Từ điểm P ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến tiếp xúc với (O) tại A và B. Đoạn thẳng OP cắt (O) tại Q (Hình 10). Cho biết PB = 8, PQ = 4. Tính R và số đo \(\widehat {AOB}\).
Gọi d là khoảng cách từ điểm O đến đường thẳng a. Xác định vị trí tương đối của đường thẳng a và đường tròn (O; r) trong các trường hợp sau:
a) r = 5, d = 13;
b) r = 8, d = 8;
c) r = 9, d = 3.
Cho góc vuông xOy có hai cạnh tiếp xúc với đường tròn (I; R) tại A, B. Cho biết chu vi của tứ giác OAIB bằng 20 cm. Tính R và độ dài AB.
Từ điểm A nằm ngoài đường tròn (O; 12 cm) vẽ hai tiếp tuyến của (O) tại B, C. Đoạn thẳng OA cắt (O) tại D. Cho biết \(\widehat {BAC} = {40^o}\). Tính:
a) Số đo \(\widehat {OCD}\).
b) Độ dài các đoạn thẳng AC, AB, AO.
(Làm tròn kết quả đến hàng đơn vị của mét)
Cho hình thoi ABCD có O là giao điểm hai đường chéo, OA = 6 cm, OB = 8 cm.
a) Tính độ dài đường cao OH của tam giác AOB.
b) Chứng minh đường tròn (O; OH) tiếp xúc với các cạnh của hình thoi.
c) Tính độ dài các đoạn thẳng AH và BH.
Một người ngồi trên trạm quan sát cao 15 m so với mực nước biển. Vào ngày trời trong xanh thì tầm nhìn xa tối đa của người đó là bao nhiêu kilomet? Biết rằng bán kính Trái Đất là khoảng 6400 km. Làm tròn kết quả đến hàng phần trăm.