Cho tấm bìa có dạng hình tam giác OSB vuông tại O, cạnh SO cố định (Hình 1a). Khi quay tấm bìa một vòng quanh cạnh SO thì hình tạo ra giống với đồ vật quen thuộc nào?
Chiếc mũ ở Hình 4 có dạng hình nón. Cho biết bán kính đáy, chiều cao và độ dài đường sinh của hình nón đó.
Tạo lập hình nón có chiều cao 12 cm và bán kính đáy 5 cm theo hướng dẫn sau:
- Cắt tấm bìa hình quạt tròn có bán kính bằng độ dài đường sinh l = \(\sqrt {{5^2} + {{12}^2}} \) = 13 (cm), độ dài cung của hình quạt tròn bằng 10\(\pi \)cm \( \approx \) 31 cm (Hình 5a).
- Cắt tấm bìa hình tròn bán kính 5 cm.
- Ghép và dán hai mép quạt lại với nhau sao cho cung của nó tạo thành đường tròn, rồi dán tấm bìa hình tròn ở trên vào làm đáy, ta được hình nón như Hình 5b.
Cho một hình nón có bán kính r, có độ dài đường sinh l (Hình 6a). Cắt mặt xung quanh của hình nón theo một đường sinh của nó rồi trải phẳng ra, ta được hình quạt tròn (Hình 6b). Tính theo r và l:
a) Độ dài cung BB’;
b) Số đo cung BB’;
c) Diện tích của hình quạt tròn.
Tính diện tích xung quanh và diện tích toàn phần của hình nón có đường kính đáy d = 10 m và chiều cao h = 12 m (kết quả làm tròn đến hàng phần trăm).
Lấy một cái gàu hình nón và một cái bình hình trụ (Hình 8a) có cùng bán kính đáy r và chiều cao h. Múc đầy nước vào gàu rồi đổ qua cái bình. Sau ba lần đổ nước như thế thì cái bình vừa đầy nước (Hình 8b). Tính theo r và h:
a) Thể tích của bình hình trụ;
b) Thể tích của gàu hình nón.
Tính thể tích của hình nón có bán kính đáy 6 cm, chiều cao 4 cm.
Từ một khối gỗ có dạng hình lập phương cạnh 6 cm, người ta khoét một hình nón có đường kính mặt đáy là 4 cm và đỉnh của hình nón chạm vào mặt đáy của khối gỗ (Hình 10). Hãy tính thể tích của phần khối gỗ còn lại (kết quả làm tròn đến hàng đơn vị).
Trong các hình sau đây, hình nào là hình nón?
Hãy cho biết chiều cao, bán kính đáy, độ dài đường sinh và diện tích xung quanh của mỗi hình nón sau:
Tạo lập hình nón có bán kính đáy bằng 4 cm, chiều cao 7 cm.
Tính thể tích của hình nón biết:
a) Bán kính đáy 6 cm, chiều cao 12 cm;
b) Đường kính của mặt đáy là 7 m, chiều cao 10 m;
c) Diện tích đáy 152 cm2, chiều cao 6 cm;
d) Chu vi đáy 130 cm, chiều cao 24 cm.
Một cái mũ chú hề có kích thước như Hình 13. Hãy tính tổng diện tích giấy làm nên chiếc mũ (không tính phần hao hụt, kết quả làm tròn đến hàng đơn vị).
Hãy cho biết bán kính đáy, chiều cao, độ dài đường sinh của mỗi hình nó sau:
Một hình quạt tròn có bán kính 29 cm, độ dài cung bằng \(42\pi \) cm. Người ta dùng hình quạt tròn này để tạo lập mặt xung quanh của một hình nón. Tính bán kính đáy và chiều cao của hình nón đó.
Cho tam giác OAB vuông tại O có AB = 37 cm, OA = 12 cm. Tính diện tích xung quanh và thể tích của hình tạo thành khi quay tam giác OAB một vòng quanh cạnh OB.
Một cọc tiêu có dạng hình nón bị cắt đi phần ở trên cũng có dạng hình nón như Hình 5.
a) Tính diện tích xung quanh của cọc tiêu theo đơn vị in2 (không tính phần đế).
b) Tính thể tích của cọc tiêu theo đơn vị in3 (không tính phần đế).
(Làm tròn kết quả đến hàng đơn vị của in2, in3).
Để làm nón lá, người ta phải chuốt từng thanh tre mảnh, nhỏ, dẻo rồi uốn thành các vòng tròn có đường kính to nhỏ khác nhau tạo thành các vành nón. Vành lớn nhất của một chiếc nón lá có đường kính là 40 cm, khoảng cách từ đỉnh cao nhất đến một điểm trên vành này là 32 cm. Tính diện tích xung quanh của chiếc nón lá đó (kết quả làm tròn đến hàng đơn vị của xăngtimet vuông).