CHƯƠNG 1. PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH
Bài 1. Phương trình quy về phương trình bậc nhất một ẩn
Bài 2. Phương trình bậc nhất hai ẩn và hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn
Bài tập cuối chương 1
CHƯƠNG 2. BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
CHƯƠNG 3. CĂN THỨC
CHƯƠNG 4. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG
HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM
Vẽ đường tròn bằng phần mềm GeoGebra
Vẽ đồ thị hàm số bậc hai y = ax^2 (a khác 0)

Trắc nghiệm Góc nội tiếp Toán 9 có đáp án

Trắc nghiệm Góc nội tiếp

20 câu hỏi
Trắc nghiệm
Câu 1 :

Hình nào dưới đây biểu diễn góc nội tiếp?

  • A.

    Hình \(1\) 

  • B.

    Hình \(2\) 

  • C.

    Hình $3$

  • D.

    Hình \(4\) 

Câu 3 :

Cho đường  tròn $(O)$ và hai dây cung $AB,AC$ bằng nhau. Qua $A$ vẽ một cát tuyến cắt dây $BC$ ở $D$ và cắt $(O)$ ở $E$.  Khi đó \(A{B^2}\) bằng

  • A.

    \(AD.AE\) 

  • B.

     \(AD.AC\)

  • C.

    \(AE.BE\)

  • D.

    \(AD.BD\)

Câu 6 :

Cho tam giác $ABC$ có ba đỉnh thuộc đường tròn tâm $(O)$, đường cao $AH$, đường kính $AD.$ Khi đó tích $AB.AC$ bằng

  • A.

    \(AH.HD\) 

  • B.

    $AH.AD$

  • C.

    \(AH.HB\) 

  • D.

    $A{H^2}$

Câu 7 :

Cho tam giác ABC nằm trên đường tròn $(O;R), $đường cao $AH,$ biết $AB = 9{\rm{ }}cm,$ $AC = 12{\rm{ }}cm,$ $AH = 4{\rm{ }}cm.$ Tính bán kính của đường tròn $(O)$.

  • A.

    \(13,5\,cm\) 

  • B.

    $12\,cm$

  • C.

    \(18\,cm\) 

  • D.

    $6\,cm$

Câu 8 :

Cho hình vẽ (hai đường tròn có tâm là \(B,C \) và điểm \(B\) nằm trên đường tròn tâm \(C\)). Biết $\widehat {MAN} = {20^0}.$

Khi đó \(\widehat {PCQ} = ?\)

  • A.

    \({60^0}\)

  • B.

    \({70^0}\)

  • C.

    \({80^0}\)

  • D.

    \({90^0}\)

Câu 9 :

Cho hình vẽ bên. Mệnh đề nào sau đây là sai.

  • A.

    \(\widehat {AMB} = \widehat {ANB}\)

  • B.

    $\widehat {AMB} = \dfrac{1}{2}\widehat {AOB}$

  • C.

    \(\widehat {ANB} = \dfrac{1}{2}\widehat {AOB}\)

  • D.

    \(\widehat {AMB} = \widehat {ANB} = \widehat {AOB}\)

Câu 10 :

Cho đường tròn \(\left( O \right)\) Trên \(\left( O \right)\) lấy ba điểm \(A,B,D\) sao cho \(\widehat {AOB} = {120^0},\,\,AD = BD.\)

Khi đó \(\Delta ABD\) là:

  • A.

    Tam giác đều.

  • B.

    Tam giác vuông tại \(D\)

  • C.

    Tam giác vuông cân tại \(D\)

  • D.

    Tam giác vuông tại \(A\).

Câu 11 :

Cho bốn điểm A, B, C, D thuộc đường tròn \(\left( O \right).\)  Biết \(\widehat {BOD} = {130^0}\) thì số đo \(\widehat {BAD}\) là:

  • A.

    \({50^0}\)        

  • B.

    \({130^0}\)

  • C.

    \({15^0}\)        

  • D.

    \({65^0}\)

Câu 12 :

Cho đường tròn \(\left( {O;R} \right)\) và một điểm \(M\) bên trong đường tròn đó. Qua \(M\) kẻ hai dây cung \(AB\) và \(CD\) vuông góc với nhau (\(C\) thuộc cung nhỏ \(AB\)).  Vẽ đường kính \(DE.\) Khi đó tứ giác \(ABEC\) là:

  • A.

    Hình bình hành

  • B.

    Hình thang

  • C.

    Hình thang cân

  • D.

    Hình thoi

Câu 13 :

Cho hình vẽ. Khi đó đáp án đúng là

  • A.

    \(\widehat {ADC} = {70^0}\)

  • B.

    \(\widehat {ADC} = {80^0}\)

  • C.

    \(\widehat {ADC} = {75^0}\)           

  • D.

    \(\widehat {ADC} = {60^0}\)

Câu 14 :

Tam giác $ABC$ nằm trên đường tròn $\left( {O;R} \right)$ biết góc $\widehat C = {45^o}$ và $AB = a$. Bán kính đường tròn $\left( O \right)$ là

  • A.

    \(a\sqrt 2 \)

  • B.

    \(a\sqrt 3 \)     

  • C.

    \(\dfrac{{a\sqrt 2 }}{2}\)        

  • D.

    $\dfrac{{a\sqrt 3 }}{3}$

Câu 15 :

Cho đường tròn (O; R). Lấy A, B, C thuộc đường tròn (O; R). Góc nội tiếp ABC chắn cung nào?

  • A.

    AB.

  • B.

    AC.

  • C.

    OC.

  • D.

    BC.

Câu 20 :

Cho tam giác ABC nội tiếp đường tròn (O). Biết \(\widehat {BOC} = 120^\circ \) và \(\widehat {OCA} = 40^\circ \). Tính số đo góc BAO.

  • A.

    \(40^\circ \).

  • B.

    \(60^\circ \).

  • C.

    \(20^\circ \).

  • D.

    \(80^\circ \).