Kết luận nào sau đây đúng khi nói về đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)?
A. Với a > 0, đồ thị nằm phía trên trục hoành và O là điểm cao nhất của đồ thị.
B. Với a < 0, đồ thị nằm phía dưới trục hoành và O là điểm thấp nhất của đồ thị.
C. Với a > 0, đồ thị nằm phía dưới trục hoành và O là điểm thấp nhất của đồ thị.
D. Với a < 0, đồ thị nằm phía dưới trục hoành và O là điểm cao nhất của đồ thị.
Điểm nào sau đây thuộc đồ thị hàm số \(y = \frac{1}{2}{x^2}\)?
A. (4;4)
B. (-4;8)
C. (-4;-8)
D. (4;-4)
Cho hàm số \(y = 2{x^2}\). Khi y = 2 thì
A. x = 1
B. x = 2 hoặc x = - 2
C. x = 1 hoặc x = - 1
D. x = 2
Đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) đi qua điểm A(2; -2). Giá trị của a bằng
A. 2
B. - 2
C. \(\frac{1}{2}\)
D. \( - \frac{1}{2}\)
Nghiệm của phương trình \({x^2} - 14x + 13 = 0\) là
A. \({x_1} = - 1;{x_2} = 13\)
B. \({x_1} = - 1;{x_2} = - 13\)
C. \({x_1} = 1;{x_2} = - 13\)
D. \({x_1} = 1;{x_2} = 13\)
Phương trình nào dưới đây không phải là phương trình bậc hai một ẩn?
A. \({x^2} - \sqrt 7 x + 7 = 0\)
B. \(3{x^2} + 5x - 2 = 0\)
C. \(2{x^2} - 2365 = 0\)
D. \( - 7x + 25 = 0\)
Gọi S và P lần lượt là tổng và tích của hai nghiệm của phương trình \({x^2} + 5x - 10 = 0\). Khi đó giá trị của S và P là
A. S = 5; P = 10.
B. S = - 5; P = 10.
C. S = -5; P = -10.
D. S = 5; P = -10.
Cho phương trình \({x^2} + 7x - 15 = 0\). Gọi \({x_1};{x_2}\) là hai nghiệm của phương trình. Khi đó giá trị của biểu thức \({x_1}^2 + {x_2}^2 - {x_1}{x_2}\)là
A. 79
B. 94
C. -94
D. -79
Cho hai hàm số \(y = \frac{3}{2}{x^2}\) và \(y = - {x^2}\). Vẽ đồ thị của hai hàm số đã cho trên cùng mặt phẳng tọa độ Oxy.
Cho hàm số \(y = a{x^2}\left( {a \ne 0} \right)\).
a) Tìm a, biết đồ thị của hàm số đi qua điểm M(2;2).
b) Vẽ đồ thị (P) của hàm số với a vừa tìm được.
c) Tìm các điểm thuộc đồ thị (P) trên có tung độ y = 8.
Giải các phương trình:
a) \({x^2} - 12x = 0\)
b) \(13{x^2} + 25x - 38 = 0\)
c) \(3{x^2} - 4\sqrt 3 x + 4 = 0\)
d) \(x(x + 3) = 27 - (11 - 3x)\)
Tính nhẩm nghiệm của các phương trình sau và kiểm tra kết quả bằng máy tính cầm tay.
a) \(14{x^2} - 13x - 27 = 0\)
b) \(5,4{x^2} + 8x + 2,6 = 0\)
c) \(\frac{2}{3}{x^2} + 2x - \frac{8}{3} = 0\)
d) \(3{x^2} - (3 + \sqrt 5 )x + \sqrt 5 = 0\)
Tìm hai số u và v (nếu có) trong mỗi trường hợp sau:
a) u + v = -2, uv = -35
b) u + v = 8, uv = -105
Cho phương trình \(2{x^2} - 7x + 6 = 0\). Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức:
A = \(\left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right) - {x_1}^2{x_2}^2\)
Một người đi xe đạp từ A đến B cách nhau 24 km. Khi đi từ B trở về A, nhờ xuôi gió nên tốc độ lúc về nhanh hơn tốc độ lúc đi là 4 km/h, vì thế thời gian về ít hơn thời gian đi 30 phút. Tính tốc độ của xe đạp khi đi từ A đến B.
Một đội thợ mỏ phải khai thác 216 tấn than trong một thời gian nhất định. Ba ngày đầu , mỗi ngày khai thác theo đúng định mức. Sau đó, mỗi ngày họ đều khai thác vượt mức 8 tấn. Do đó họ đã khai thác được 232 tấn và xog trước thời hạn 1 ngày. Hỏi theo kế hoạch, mỗi ngày đội thợ phải khai thác bao nhiêu tấn than?
Một miếng kim loại thứ nhất nặng 585 g, miếng kim loại thứ hai nặng 420 g. Thể tích của miếng thứ nhất nhỏ hơn thể tích của miếng thứ hai là 10cm3 , nhưng khối lượng riêng của miếng thứ nhất lớn hơn khối lượng riêng của miếng thứ hai là 9 g/cm3 . Biết công thức tính khối lượng riêng của một vật là \(D = \frac{m}{V}\), trong đó: D (g/cm3) là khối lượng riêng, m (g) là khối lượng của vật, V (cm3) là thể tích của vật. Tìm khối lượng riêng của mỗi miếng kim loại.
Hai dung dịch muối có tổng khối lượng bằng 220 kg. Lượng muối trong dung dịch I là 5 kg, lượng muối trong dung dịch II là 4,8 kg. Biết nồng độ muối trong dung dịch I nhiều hơn nồng độ muối trong dung dịch II là 1%. Tính khối lượng mỗi dung dịch nói trên.
Điểm nào sau đây thuộc đồ thị của hàm số y = \( - \frac{2}{3}{x^2}\)?
A. (3;8)
B. (-3;6)
C. (-3;-6)
D. (3;-8)
Cho hàm số y = x2. Khi y = 4 thì
A. x = - 2
B. x = - 2 hoặc x = 2
C. x = - 4 hoặc x = 4
Đồ thị hàm số y = ax2 (\(a \ne 0)\) đi qua điểm A(1; - 2). Giá trị của a bằng
C. \(\frac{1}{4}\)
D. \( - \frac{1}{4}\)
Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) có \(\Delta = {b^2} - 4ac = 0\). Khi đó, phương trình có hai nghiệm là
A. \({x_1} = {x_2} = - \frac{b}{{2a}}\)
B. \({x_1} = {x_2} = - \frac{b}{a}\)
C. \({x_1} = {x_2} = \frac{b}{{2a}}\)
D. \({x_1} = {x_2} = \frac{b}{a}\)
Nghiệm của phương trình x2 – 15x – 16 = 0 là
A. \({x_1} = - 1;{x_2} = 16\)
B. \({x_1} = - 1;{x_2} = - 16\)
C. \({x_1} = 1;{x_2} = - 16\)
D. \({x_1} = 1;{x_2} = 16\)
Phương trình nào dưới đây không là phương trình bậc hai một ẩn?
A. \({x^2} - \sqrt 7 x + 15 = 0\)
B. \(3{x^2} + 5x = 0\)
C. \(5{x^2} - 1368 = 0\)
D. \(\frac{5}{9}x + 25 = 0\)
Gọi S và P lần lượt là tổng và tích hai nghiệm của phương trình x2 + 3x – 70 = 0. Khi đó, giá trị S và P là
A. S = 3; P = 70
B. S = -3; P = 70
C. S = - 3; P = - 70
D. S = 3; P = - 70
Cho phương trình x2 + 6x – 91 = 0. Gọi x1, x2 là hai nghiệm của phương trình. Khi đó, giá trị của biểu thức \(x_1^2 + x_2^2 - 2{x_1} - 2{x_2}\) là
A. 127
B. 230
C. – 230
D. – 127
Chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Cho hàm số y = ax2 (\(a \ne 0)\)
a) Giá trị a để đồ thị của hàm số đi qua điểm (2; 2) là a = 2.
b) Nếu a > 0 thì đồ thị của hàm số nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị.
c) Nếu a < 0 thì đồ thị của hàm số nằm phía dưới trục hoành, O là điểm cao nhất của đồ thị.
d) Đồ thị của hàm số là một đường cong parabol đỉnh O, nhận trục tung làm trục đối xứng.
Cho phương trình 5x2 – 7x + 2 = 0.
a) Phương trình có a – b + c = 0 nên có hai nghiệm phân biệt là: \({x_1} = - 1;{x_2} = - \frac{c}{a} = - \frac{2}{5}\).
b) Phương trình có a + b + c = 0 nên có hai nghiệm phân biệt là: \({x_1} = 1;{x_2} = \frac{c}{a} = \frac{2}{5}\).
c) Gọi x1; x2 là hai nghiệm của phương trình. Khi đó \(x_1^2 + x_2^2 = - \frac{{29}}{{25}}\).
d) Gọi x1; x2 là hai nghiệm của phương trình. Khi đó \(x_1^2 + x_2^2 = \frac{{29}}{{25}}\).
Cho phương trình ax2 + bx + c = 0 \(\left( {a \ne 0} \right)\).
a) Khi \(\Delta = 0\), phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{a}\).
b) Khi \(\Delta = 0\), phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\).
c) Khi \(\Delta > 0\), phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}.\)
d) Khi b = 2b’; \(\Delta ' = b' - ac > 0\), phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b' + \sqrt \Delta }}{a},{x_2} = \frac{{ - b' - \sqrt \Delta }}{a}.\)
Cho hai hàm số \(y = \frac{3}{4}{x^2}\) và \(y = - \frac{3}{4}{x^2}\).
a) Vẽ đồ thị của hai hàm số trên cùng một mặt phẳng toạ độ.
b) Nhận xét về tính đối xứng của hai đồ thị qua trục Ox.
c) Xác định m để đường thẳng d: y = (3m – 2)x + 5 cắt parabol (P): \(y = \frac{3}{4}{x^2}\) tại điểm E có hoành độ bằng – 2.
Trên mặt phẳng toạ độ Oxy, cho parabol (P): y = ax2 \(\left( {a \ne 0} \right)\) đi qua điểm M(2; - 2).
a) Tìm hệ số a, vẽ (P) với a vừa tìm được.
b) Tìm tung độ của điểm thuộc parabol có hoành độ x = - 3.
c) Tìm các điểm thuộc parabol có tung độ y = - 4,5.
a) Vẽ đồ thị (P) của hàm số \(y = \frac{2}{3}{x^2}\) và đường thẳng d: \(y = - \frac{1}{3}x + 1\) trên cùng một mặt phẳng toạ độ Oxy.
b) Tìm toạ độ giao điểm của (P) và d bằng phép tính.
a) 7x2 + \(14\sqrt 5 \)x = 0
b) 5x2 – 3 = 0
c) 7x2 - 5x = 10 – 2x
d) (x + 7)2 = 81
a) 3x2 + 23x – 36 = 0
b) x2 + \(\frac{8}{3}x = 1\)
c) 7x2 \( - 2\sqrt 7 x + 1 = 0\)
d) x(2x + 5) = x2 - 9
a) \({x^2} - (3 + \sqrt 5 )x + 3\sqrt 5 = 0\)
b) \(\left( {2x - 5} \right)\left( {3x + 2} \right) = \left( {5x + 1} \right)\left( {3x + 2} \right)\)
c) \({x^2} + x = 2\sqrt 3 (x + 1)\)
a) u + v = - 2, uv = - 35
b) u + v = 8, uv = 105
c) u + v = - 1, u2 + v2 = 25
Cho phương trình 2x2 – 9x – 5 = 0. Gọi x1; x2 là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức sau:
a) \(A = x_1^2x_2^2 - 2x_1^2 - 2x_2^2\)
b) \(B = \frac{{5{x_2}}}{{{x_1} + 2}} + \frac{{5{x_1}}}{{{x_2} + 2}}\)
Cho phương trình 5x2 – 7x + 1 = 0. Gọi x1; x2 là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị của các biểu thức sau:
\(A = \left( {{x_1} - \frac{7}{5}} \right){x_1} + \frac{1}{{25x_2^2}} + x_2^2\).
Một công nhân theo kế hoạch phải làm 120 sản phẩm trong một thời gian nhất định. Do cải tiến kĩ thuật nên thực tế mỗi ngày người đó đã làm được nhiều hơn 3 sản phẩm so với kế hoạch. Vì thế người đó đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi theo kế hoạch, mỗi ngày công nhân đó phải làm bao nhiêu sản phẩm?
Một mảnh vườn hình chữ nhật có diện tích 1000 m2. Nếu tăng chiều dài thêm 10 m, giảm chiều rộng đi 5 m thì diện tích mảnh vườn không thay đổi. Tính các kích thước của mảnh vườn.
Một ô tô dự định đi từ tỉnh A đến tỉnh B cách nhau 180 km trong một thời gian nhất định. Sau khi đi đợc 1 giờ, ô tô bị hỏng nên phải dừng lại 20 phút để sửa. Để đến tỉnh B đúng giờ đã định thì trên quãng đường còn lại ô tô phải tăng tốc độ thêm mỗi giờ 12 km. Tính tốc độ lúc đầu của ô tô.
Một phòng họp có 420 cái ghế được chia thành các dãy có số ghế bằng nhau. Nếu thêm cho mỗi dãy 7 cái ghế và bớt đi 5 dãy thì số ghế trong phòng họp không thay đổi. Hỏi lúc đầu trong phòng họp có bao nhiêu dãy ghế?
Người ta trộn 8 g chất lỏng A với 6 g chất lỏng B để được hỗn hợp có khối lượng riêng là 0,7 g/cm3 . Biết khối lượng riêng của chất lỏng A lớn hơn khối lượng riêng của chất lỏng B là 0,2 g/cm3 . tìm khối lượng riêng của mỗi chất lỏng.