Nghiệm của phương trình \({x^2} - 14x + 13 = 0\) là
A. \({x_1} = - 1;{x_2} = 13\)
B. \({x_1} = - 1;{x_2} = - 13\)
C. \({x_1} = 1;{x_2} = - 13\)
D. \({x_1} = 1;{x_2} = 13\)
Dựa vào công thức nghiệm của phương trình bậc hai:
Cho phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) và biệt thức \(\Delta = {b^2} - 4ac\).
+ Nếu \(\Delta \)> 0 thì phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}},{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\);
+ Nếu \(\Delta \) = 0 thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\);
+ Nếu \(\Delta \) < 0 thì phương trình vô nghiệm.
\({x^2} - 14x + 13 = 0\)
Ta có a = 1, b = -14, c = 13
\(\Delta = {( - 14)^2} - 4.1.13 = 144 > 0\)
Vậy phương trình có hai nghiệm phân biệt là:
\({x_1} = \frac{{14 + \sqrt {144} }}{2} = 13;{x_2} = \frac{{14 - \sqrt {144} }}{2} = 1\)
Chọn đáp án D.
Các bài tập cùng chuyên đề
Áp dụng công thức nghiệm, giải các phương trình sau:
a) \(2{x^2} - 5x + 1 = 0\);
b) \({x^2} + 8x + 16 = 0\);
c) \({x^2} - x + 1 = 0\).
Dùng công thức nghiệm của phương trình bậc hai, giải các phương trình sau:
a) \({x^2} - 2\sqrt 5 x + 2 = 0\);
b) \(4{x^2} + 28x + 49 = 0\);
c) \(3{x^2} - 3\sqrt 2 x + 1 = 0\).
Nhắc lại công thức tính hai nghiệm \({x_1},{x_2}\) của phương trình trên.
Các nghiệm của phương trình \({x^2} + 7x + 12 = 0\) là
A. \({x_1} = 3;{x_2} = 4\).
B. \({x_1} = - 3;{x_2} = - 4\).
C. \({x_1} = 3;{x_2} = - 4\).
D. \({x_1} = - 3;{x_2} = 4\).
Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức \(d = 0,05{v^2} + 1,1v\) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?
Cho phương trình bậc hai \({x^2} - 4x + 3 = 0\).
a) Thay mỗi dấu ? bằng số thích hợp để viết lại phương trình đã cho thành:
\({x^2} - 4x + 4 = ?\) hay \({\left( {x - 2} \right)^2} = ?\) (*)
b) Giải phương trình (*), từ đó tìm nghiệm của phương trình đã cho.
Giải các phương trình:
a) \(7{x^2} - 3x + 2 = 0\)
b) \(3{x^2} - 2\sqrt 3 x + 1 = 0\)
c) \( - 2{x^2} + 5x + 2 = 0\)
Trả lời câu hỏi trong Hoạt động khởi động (trang 11):
Sau khi được ném theo chiều từ dưới lên, độ cao h(m) của một quả bóng theo thời gian t (giây), được xác định bởi công thức h = 2 + 9t – 5t2 . Thời gian từ lúc ném cho đến khi bóng chạm đất là bao lâu?
Giải các phương trình:
a) x(x + 8) = 20
b) \(x(3x - 4) = 2{x^2} + 5\)
c) \({(x - 5)^2} + 7x = 65\)
d) \((2x + 3)(2x - 3) = 5(2x + 3)\)
Xét phương trình \(2{x^2} - 4x - 16 = 0\) (1)
Chia 2 vế của phương trình (1), ta được phương trình \({x^2} - 2x - 8 = 0\) (2)
a) Tìm số thích hợp cho “?” khi biến đổi phương trình (2) về dạng: ${{\left( x-? \right)}^{2}}=?$.
b) Từ đó, hãy giải phương trình 2.
c) Nêu các nghiệm của phương trình (1).
Giải các phương trình:
a) \(3{x^2} - x - 0,5 = 0\)
b) \(4{x^2} + 10x + 15 = 0\)
c) \( - {x^2} + x - \frac{1}{4} = 0\)
Biến đổi phương trình tổng quát ax2 + bx + c = 0 (a\( \ne \)0) theo các bước tương tự ví dụ 3, ta có:
\(\begin{array}{l}a{x^2} + bx + c = 0\\a{x^2} + bx = - c\\{x^2} + \frac{b}{a}x = \frac{{ - c}}{a}\\{x^2} + 2.x.\frac{b}{{2a}} + {\left( {\frac{b}{{2a}}} \right)^2} = \frac{{ - c}}{a} + {\left( {\frac{b}{{2a}}} \right)^2}\\{\left( {x + \frac{b}{{2a}}} \right)^2} = \frac{{{b^2} - 4ac}}{{4{a^2}}}.\end{array}\)
Đặt \(\Delta = {b^2} - 4ac\) và gọi là biệt thức của phương trình (\(\Delta \) là một chữ cái Hy Lạp, đọc là “đenta”). Ta được \({\left( {x + \frac{b}{{2a}}} \right)^2} = \frac{\Delta }{{4{a^2}}}\). (1)
Giải phương trình (1) theo các hệ số a, b, c trong mỗi trường hợp sau:
a) \(\Delta \) > 0;
b) \(\Delta \) = 0
c) \(\Delta \) < 0.
Giải các phương trình sau:
a) \(3{x^2} - x + 2 = 0\)
b) \( - 3{t^2} + t + 6 = 0\)
c) \(3{x^2} - 6x + 3 = 0\)
Qua phân tích dữ liệu tại một cửa hàng tiện lợi, người ta thấy rằng nếu tăng giá bán của một loại nước ngọt thêm x (nghìn đồng) thì lợi nhuận P (nghìn đồng) thu về trong một tuần sau đó tính được theo công thức:
\(P = - 20{x^2} + 80x + 3300\)
Hỏi cửa hàng phải tăng giá của loại nước ngọt đó thêm bao nhiêu để lợi nhuận thu về trong tuần sau đó đạt mức 3380000 đồng?
Một bức tranh được treo bởi một khung tranh có chiều dài 80 cm, chiều rộng 60 cm và viền khung rộng x (cm) như Hình 6.6.
a) Viết biểu thức biểu thị diện tích của bức tranh.
b) Tìm x, biết diện tích bức tranh là 0,3996 m2.
Giải các phương trình sau:
a) \( - 2{x^2} + x + 1 = 0\)
b) \({x^2} - x + 4 = 0\)
c) \(4{x^2} - 4x + 1 = 0\)
d) \( - {x^2} - 4x + 1 = 0\)
e) \({y^2} - y - 3 = 0\)
g) \({z^2} - 2\sqrt 5 z + 5 = 0\)
Tìm các giá trị của m để phương trình \({x^2} - (m + 3)x + {m^2} = 0\) có nghiệm x = 1.
Giải các phương trình sau:
a) \({x^2} - x - 1 = 3x + 1\)
b) \(\frac{{{x^2} - 9}}{3} + 2 = x(1 - x)\)
c) \({\left( {x + 2} \right)^2} - 3(x + 2) + 2 = 0\)
d) \(2{x^4} + 3{x^2} - 2 = 0\)
Lượng nhiên liệu tiêu thụ y (l/100 km) của một số loại ô tô phụ thuộc vào tốc độ di chuyển x (km/h) theo hàm số \(y = \frac{1}{{320}}{x^2} - \frac{3}{8}x + \frac{{73}}{4}\) với \(20 \le x \le 140\). Hỏi ô tô đi với tốc độ nào thì lượng nhiên liệu tiêu thụ là 7 l/100 km?
Giải các phương trình sau:
a) \(2{x^2} - 3x - 2 = 0\)
b) \(3{y^2} + 4 = y\)
c) \({z^2} + 2\sqrt 3 z + 2 = 0\)
d) \( - {x^2} + 4\sqrt 3 z - 12 = 0\)
Phương trình nào sau đây vô nghiệm?
A. \(x(2x + 1) = \sqrt 5 \)
B. \(\frac{{{x^2} - 1}}{2} = 2(x - 3)\)
C. \(3{x^2} = x\left( {x - 5} \right)\)
D. \({x^2} - 2\sqrt 3 x + 3 = 0\)