Bài 6.32 trang 190 SBT đại số 10


Giải bài 6.32 trang 190 sách bài tập đại số 10. Chứng minh rằng các biểu thức ...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng các biểu thức sau là những hằng số không phụ thuộc \(\alpha ,\beta \).

LG a

\(\sin 6\alpha \cot 3\alpha  - c{\rm{os6}}\alpha \)

Lời giải chi tiết:

\(\sin 6\alpha \cot 3\alpha  - c{\rm{os6}}\alpha  \) \(= 2\sin 3\alpha \cos 3\alpha .\dfrac{{\cos 3\alpha }}{{\sin 3\alpha }} \) \( - (2{\cos ^2}3\alpha  - 1)\)

=\(2{\cos ^2}3\alpha  - 2{\cos ^2}3\alpha  + 1 = 1\)

LG b

\({{\rm{[}}\tan ({90^0} - \alpha ) - \cot ({90^0} + \alpha ){\rm{]}}^2}\) \( -{{\rm{[}}c{\rm{ot(18}}{{\rm{0}}^0} + \alpha ) + \cot ({270^0} + \alpha ){\rm{]}}^2}\);

Lời giải chi tiết:

\({{\rm{[}}\tan ({90^0} - \alpha ) - \cot ({90^0} + \alpha ){\rm{]}}^2}  \) \( - {{\rm{[}}c{\rm{ot(18}}{{\rm{0}}^0} + \alpha ) + \cot ({270^0} + \alpha ){\rm{]}}^2}\)

=\({(\cot \alpha  + \tan \alpha )^2} - {(\cot \alpha  - \tan \alpha )^2}\)

=\({\cot ^2}\alpha  + 2 + {\tan ^2}\alpha  \) \( - {\cot ^2}\alpha  + 2 - {\tan ^2}\alpha  = 4\)

LG c

\((\tan \alpha  - \tan \beta )cot(\alpha  - \beta ) - \tan \alpha \tan \beta \)

Lời giải chi tiết:

\((\tan \alpha  - \tan \beta )cot(\alpha  - \beta ) - \tan \alpha \tan \beta  \) \( = \dfrac{{\tan \alpha  - \tan \beta }}{{\tan (\alpha  - \beta )}} - \tan \alpha \tan \beta \)

= \(1 + \tan \alpha \tan \beta  - \tan \alpha \tan \beta  = 1\)

LG d

 \((\cot \dfrac{\alpha }{3} - \tan \dfrac{\alpha }{3})\tan \dfrac{{2\alpha }}{3}\).

Lời giải chi tiết:

\((\cot \dfrac{\alpha }{3} - \tan \dfrac{\alpha }{3})\tan \dfrac{{2\alpha }}{3} \) \( = (\dfrac{{\cos \dfrac{\alpha }{3}}}{{\sin \dfrac{\alpha }{3}}} - \dfrac{{\sin \dfrac{\alpha }{3}}}{{\cos \dfrac{\alpha }{3}}})\dfrac{{\sin \dfrac{{2\alpha }}{3}}}{{\cos \dfrac{{2\alpha }}{3}}}\)

=\(\dfrac{{{{\cos }^2}\dfrac{\alpha }{3} - {{\sin }^2}\dfrac{\alpha }{3}}}{{\sin \dfrac{\alpha }{3}\cos \dfrac{\alpha }{3}}}.\dfrac{{\sin \dfrac{{2\alpha }}{3}}}{{\cos \dfrac{{2\alpha }}{3}}}\) \(  = \dfrac{{\cos \dfrac{{2\alpha }}{3}}}{{\dfrac{1}{2}\sin \dfrac{{2\alpha }}{3}}}.\dfrac{{\sin \dfrac{{2\alpha }}{3}}}{{\cos \dfrac{{2\alpha }}{3}}} = 2\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!