Bài 5.99 trang 215 SBT đại số và giải tích 11>
Giải bài 5.99 trang 215 sách bài tập đại số và giải tích 11. Tìm đạo hàm cấp hai của hàm số sau:...
Đề bài
Tìm đạo hàm cấp hai của hàm số sau:
\(y = \left( {1 - {x^2}} \right)\cos x.\)
Phương pháp giải - Xem chi tiết
Tính đạo hàm cấp 1 rồi tính tiếp đạo hàm cấp 2 của hàm số.
Lời giải chi tiết
\(\begin{array}{l}
y' = \left( {1 - {x^2}} \right)'\cos x + \left( {1 - {x^2}} \right)\left( {\cos x} \right)'\\
= - 2x\cos x - \left( {1 - {x^2}} \right)\sin x\\
y'' = - 2\left[ {\cos x + x\left( {\cos x} \right)'} \right]\\
- \left[ {\left( {1 - {x^2}} \right)'\sin x + \left( {1 - {x^2}} \right)\left( {\sin x} \right)'} \right]\\
= - 2\left( {\cos x - x\sin x} \right)\\
- \left[ { - 2x\sin x + \left( {1 - {x^2}} \right)\cos x} \right]\\
= - 2\cos x + 2x\sin x\\
+ 2x\sin x - \left( {1 - {x^2}} \right)\cos x\\
= \left( { - 2 - 1 + {x^2}} \right)\cos x + 4x\sin x\\
= \left( {{x^2} - 3} \right)\cos x + 4x\sin x
\end{array}\)
Loigiaihay.com
- Bài 5.100 trang 215 SBT đại số và giải tích 11
- Bài 5.101 trang 215 SBT đại số và giải tích 11
- Bài 5.102 trang 215 SBT đại số và giải tích 11
- Bài tập trắc nghiệm trang 216 SBT đại số và giải tích 11
- Bài 5.103 trang 216 SBT đại số và giải tích 11
>> Xem thêm