Bài 4.20 trang 165 SBT đại số và giải tích 11


Giải bài 4.20 trang 165 sách bài tập đại số và giải tích 11. Giải thích bằng đồ thị kết luận ở câu a)...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh rằng hàm số \(y = \sin x\) không có giới hạn khi \(x \to  + \infty \)

Phương pháp giải:

Xem lại định nghĩa giới hạn hàm số tại đây.

Lời giải chi tiết:

Xét hai dãy số \(\left( {{a_n}} \right)\) với \({a_n} = 2n\pi \) và \(\left( {{b_n}} \right)\) với \(\left( {{b_n}} \right) = {\pi  \over 2} + 2n\pi {\rm{ }}\left( {n \in N*} \right)\)

Ta có, \(\lim {a_n} = \lim 2n\pi  =  + \infty \) ;

\(\lim {b_n} = \lim \left( {{\pi  \over 2} + 2n\pi } \right)\)

\(= \lim n\left( {{\pi  \over {2n}} + 2\pi } \right) =  + \infty \)

\(\lim \sin {a_n} = \lim \sin 2n\pi  = \lim 0 = 0\)

\(\lim \sin {b_n} = \lim \sin \left( {{\pi  \over 2} + 2n\pi } \right) = \lim 1 = 1\)

Như vậy, \({a_n} \to  + \infty ,{\rm{  }}{b_n} \to  + \infty \) nhưng \(\lim \sin {a_n} \ne \lim \sin {b_n}\).

Do đó theo định nghĩa, hàm số \(y = \sin x\) không có giới hạn khi \(x \to  + \infty \).

LG b

Giải thích bằng đồ thị kết luận ở câu a).

Phương pháp giải:

Xem lại định nghĩa giới hạn hàm số tại đây.

Lời giải chi tiết:

Dựa vào đồ thị hàm số y=sinx ta thấy hàm số không có giới hạn tại vô cực

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Giới hạn của hàm số

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài