Bài 4.22 trang 165 SBT đại số và giải tích 11


Giải bài 4.22 trang 165 sách bài tập đại số và giải tích 11. Tìm giới hạn của các hàm số sau :...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giới hạn của các hàm số sau

LG a

\(f\left( x \right) = {{{x^2} - 2x - 3} \over {x - 1}}\) khi \(x \to 3\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 3} \dfrac{{{x^2} - 2x - 3}}{{x - 1}}\) \( = \dfrac{{{3^2} - 2.3 - 3}}{{3 - 1}} = 0\)

LG b

\(h\left( x \right) = {{2{x^3} + 15} \over {{{\left( {x + 2} \right)}^2}}}\) khi \(x \to  - 2\)

Lời giải chi tiết:

Ta có:

\(\mathop {\lim }\limits_{x \to  - 2} \left( {2{x^3} + 15} \right)\) \( = 2.{\left( { - 2} \right)^3} + 15 =  - 1 < 0\) và \(\mathop {\lim }\limits_{x \to  - 2} {\left( {x + 2} \right)^2} = 0\), \({\left( {x + 2} \right)^2} > 0,\forall x \ne  - 2\)

Vậy \(\mathop {\lim }\limits_{x \to  - 2} \dfrac{{2{x^3} + 15}}{{{{\left( {x + 2} \right)}^2}}} =  - \infty \)

LG c

\(k\left( x \right) = \sqrt {4{x^2} - x + 1} \) khi \(x \to  - \infty \)

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } \sqrt {4{x^2} - x + 1} \cr 
& = \mathop {\lim }\limits_{x \to - \infty } \left| x \right|\sqrt {4 - {1 \over x} + {1 \over {{x^2}}}} \cr 
& = \mathop {\lim }\limits_{x \to - \infty } \left( { - x\sqrt {4 - {1 \over x} + {1 \over {{x^2}}}} } \right) \cr &= + \infty \cr} \)

LG d

\(h\left( x \right) = {{x - 15} \over {x + 2}}\) khi \(x \to  - {2^ + }\) và khi \(x \to  - {2^ - }\)

Lời giải chi tiết:

Ta có: \(\mathop {\lim }\limits_{x \to  - {2^ + }} \left( {x - 15} \right) =  - 2 - 15 =  - 17 < 0\) và \(\mathop {\lim }\limits_{x \to  - {2^ + }} \left( {x + 2} \right) = 0\), \(x + 2 > 0,\forall x >  - 2\)

Vậy \(\mathop {\lim }\limits_{x \to  - {2^ + }} \dfrac{{x - 15}}{{x + 2}} =  - \infty \)

Ta có: \(\mathop {\lim }\limits_{x \to  - {2^ - }} \left( {x - 15} \right) =  - 2 - 15 =  - 17 < 0\) và \(\mathop {\lim }\limits_{x \to  - {2^ - }} \left( {x + 2} \right) = 0\), \(x + 2 < 0,\forall x <  - 2\)

Vậy \(\mathop {\lim }\limits_{x \to  - {2^ - }} \dfrac{{x - 15}}{{x + 2}} =  + \infty \)

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Giới hạn của hàm số

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài