Bài 2.31 trang 78 SBT hình học 11


Giải bài 2.31 trang 78 sách bài tập hình học 11. Cho hai tia Ax, By chéo nhau. Lấy M, N lần lượt là các điểm di động trên Ax, By...

Lựa chọn câu để xem lời giải nhanh hơn

Cho hai tia \(Ax\), \(By\) chéo nhau. Lấy \(M\), \(N\) lần lượt là các điểm di động trên \(Ax\), \(By\). Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa \(By\) và song song với \(Ax\). Đường thẳng qua \(M\) và song song với \(AB\) cắt \(\left( \alpha  \right)\) tại \(M’\).

LG a

Tìm tập hợp điểm \(M’\).

Phương pháp giải:

Sử dụng tính chất: Nếu mặt phẳng \((\alpha)\) và \((\beta)\) có điểm chung \(S\) và lần lượt chứa hai đường thẳng song song \(d\) và \(d'\) thì giao tuyến của \((\alpha)\) và \((\beta)\) là đường thẳng \(\Delta\) đi qua \(S\) và song song với \(d\) và \(d'\).

Sử dụng tính chất: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng sẽ có một đường thẳng chung (giao tuyến) đi qua điểm chung ấy.

Lời giải chi tiết:

Gọi \((\beta)\) là mặt phẳng xác định bởi hai đường thẳng \(AB\) và \(Ax\).

Do \(Ax\parallel (\alpha)\) nên \((\beta)\cap (\alpha)=Bx', Bx'\parallel Ax\) .

Ta có \(M'\) là điểm chung của \((\alpha)\) và \((\beta)\) nên \(M'\in Bx'\).

Khi \(M\) trùng với \(A\) thì \(M'\) trùng \(B\) nên tập hợp \(M'\) là tia \(Bx'\).

LG b

Gọi \(I\) là trung điểm của \(MN\). Tìm tập hợp các điểm \(I\) khi \(AM = BN\)

Phương pháp giải:

Sử dụng tính chất của hình bình hành.

Sử dụng phép tịnh tiến.

Lời giải chi tiết:

Ta có tứ giác \(ABM'M\) là hình bình hành nên \(BM'=AM=BN\).

Tam giác \(BM'N\) cân tại \(B\)

Suy ra trung điểm \(J\) của cạnh đáy \(NM'\) thuộc phân giác trong \(Bt\) của góc \(B\) trong tam giác \(BNM'\). Ta có \(Bt\) cố định.

Gọi \(O\) là trung điểm của \(AB\). Trong mặt phẳng \((AB,Bt)\), tứ giác \(OBIJ\) là hình bình hành nên \(\vec {JI}=\vec{BO}\).

Do đó \(I\) là ảnh của \(J\) trong phép tịnh tiến theo vectơ \(\vec{BO}\).

Vậy tập hợp \(I\) là tia \(Ot'\), \(Ot'\parallel Bt\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Hai mặt phẳng song song

  • Bài 2.30 trang 78 SBT hình học 11

    Giải bài 2.30 trang 78 sách bài tập hình học 11. Cho tứ diện ABCD. Gọi I và J lần lượt là hai điểm di động trên các cạnh AD và BC sao cho...

  • Bài 2.29 trang 77 SBT hình học 11

    Giải bài 2.29 trang 77 sách bài tập hình học 11. Tính độ dài A’B’, B’C’...

  • Bài 2.28 trang 77 SBT hình học 11

    Giải bài 2.28 trang 77 sách bài tập hình học 11. Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm hai đường chéo, AC = a, BD = b, tam giác SBD đều...

  • Bài 2.27 trang 77 SBT hình học 11

    Giải bài 2.27 trang 77 sách bài tập hình học 11. Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M và N là hai điểm di động tương ứng trên AD và BE sao cho...

  • Bài 2.26 trang 77 SBT hình học 11

    Giải bài 2.26 trang 77 sách bài tập hình học 11. Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trung điểm của A’B’...

  • Bài 2.25 trang 77 SBT hình học 11

    Giải bài 2.25 trang 77 sách bài tập hình học 11. Cho hình lăng trụ tam giác ABC.A’B’C’ có các cạnh bên là AA’, BB’, CC’. Gọi I và I’tương ứng là trung điểm của hai cạnh BC và B’C’...

  • Bài 2.24 trang 77 SBT hình học 11

    Giải bài 2.24 trang 77 sách bài tập hình học 11. Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN...

  • Bài 2.23 trang 76 SBT hình học 11

    Giải bài 2.23 trang 76 sách bài tập hình học 11. Từ bốn đỉnh của hình bình hành ABCD vẽ bốn nửa đường thẳng song song cùng chiều Ax, By, Cz và Dt sao cho chúng cắt mặt phẳng (ABCD)...

  • Bài 2.22 trang 76 SBT hình học 11

    Giải bài 2.22 trang 76 sách bài tập hình học 11. Cho tứ diện ABCD. Gọi G1, G2, G3 lần lượt là trọng tâm các tam giác ABC, ACD, ABD. Chứng minh rằng (G1G2G3)//(BCD).

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài