Bài 2.24 trang 77 SBT hình học 11


Giải bài 2.24 trang 77 sách bài tập hình học 11. Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BF lần lượt lấy các điểm M và N sao cho AM = BN...

Lựa chọn câu để xem lời giải nhanh hơn

Cho hai hình vuông \(ABCD\) và \(ABEF\) ở trong hai mặt phẳng phân biệt. Trên các đường chéo \(AC\) và \(BF\) lần lượt lấy các điểm \(M\) và \(N\) sao cho \(AM = BN\). Các đường thẳng song song với \(AB\) vẽ từ \(M\) và \(N\) lần lượt cắt \(AD\) và \(AF\) tại \(M’\) và \(N’\). Chứng minh

LG a

\(\left( {A{\rm{D}}F} \right)\parallel \left( {BCE} \right)\).

Phương pháp giải:

Sử dụng tính chất: Nếu đường thẳng \(d\) không nằm trong mặt phẳng \((\alpha)\) và \(d\) song song với \(d’\) nằm trong \((\alpha)\) thì \(d\) song song với \((\alpha)\).

\(\left\{ \begin{array}{l}d \not\subset (\alpha )\\d\parallel d'\\d' \subset (\alpha )\end{array} \right. \Rightarrow d\parallel (\alpha )\)

Sử dụng tính chất: Nếu mặt phẳng \((\alpha)\) chứa hai đường thẳng cắt nhau \(a, b\) và hai đường thẳng này cùng song song với mặt phẳng \((\beta)\) thì mặt phẳng \((\alpha)\) song song với mặt phẳng \((\beta)\).

\(\left\{ \begin{array}{l}a \subset (\alpha ),b \subset (\alpha )\\a\text{ cắt }b\\a\parallel (\beta ),b\parallel (\beta )\end{array} \right. \Rightarrow (\alpha )\parallel (\beta )\)

Lời giải chi tiết:

Ta có:

\(\left\{ \begin{array}{l}AD\parallel BC\\BC \subset (BCE)\end{array} \right. \Rightarrow AD\parallel (BCE)\)

\(\left\{ \begin{array}{l}AF\parallel BE\\BE \subset (BCE)\end{array} \right. \Rightarrow AF\parallel (BCE)\)

Mà \(AD, AF\subset (ADF)\)

Nên \((ADF)\parallel (BCE)\).

LG b

\(M'N'\parallel DF\).

Phương pháp giải:

Sử dụng định lý Talet.

Lời giải chi tiết:

Vì \(ABCD\) và \(ABEF\) là các hình vuông nên \(AC=BF\)

Ta lại có \(MM’\parallel CD\Rightarrow \dfrac{AM’}{AD}=\dfrac{AM}{AC}\)

Và \(NN’\parallel AB\Rightarrow \dfrac{AN’}{AF}=\dfrac{BN}{BF}\)

Suy ra \(\dfrac{AM’}{AD}=\dfrac{AN’}{AF}\Rightarrow M’N’\parallel DF\).

LG c

\(\left( {DEF} \right)\parallel \left( {MM'N'N} \right)\) và \(MN\parallel \left( {DEF} \right)\) 

Phương pháp giải:

Sử dụng tính chất: Nếu đường thẳng \(d\) không nằm trong mặt phẳng \((\alpha)\) và \(d\) song song với \(d’\) nằm trong \((\alpha)\) thì \(d\) song song với \((\alpha)\).

\(\left\{ \begin{array}{l}d \not\subset (\alpha )\\d\parallel d'\\d' \subset (\alpha )\end{array} \right. \Rightarrow d\parallel (\alpha )\)

Sử dụng tính chất: Nếu mặt phẳng \((\alpha)\) chứa hai đường thẳng cắt nhau \(a, b\) và hai đường thẳng này cùng song song với mặt phẳng \((\beta)\) thì mặt phẳng \((\alpha)\) song song với mặt phẳng \((\beta)\).

\(\left\{ \begin{array}{l}a \subset (\alpha ),b \subset (\alpha )\\a\text{ cắt }b\\a\parallel (\beta ),b\parallel (\beta )\end{array} \right. \Rightarrow (\alpha )\parallel (\beta )\)

Sử dụng tính chất khi \((\alpha)\) song song với \((\beta)\) thì \((\alpha)\) sẽ song song với mọi đường thẳng thuộc \((\beta)\).

Sử dụng tính chất khi \((\alpha)\parallel (\beta)\) thì \((\alpha)\) song song với mọi đường thuộc \((\beta)\).

Lời giải chi tiết:

Vì \(\left\{ \begin{array}{l}DF\parallel M'N'\\M'N' \subset (MM'N'N)\end{array} \right. \)

\(\Rightarrow DF\parallel (MM'N'N)\)

\(\left\{ \begin{array}{l}NN'\parallel AB \Rightarrow NN'\parallel {\rm{EF}}\\NN' \subset (MM'N'N)\end{array} \right. \)

\(\Rightarrow EF\parallel (MM'N'N)\)

Mà \(DF, EF\subset (DEF)\) nên \((DEF)\parallel (MM’N’N)\).

Vì \((MM’N’N)\parallel (DEF)\) và \(MN\subset (MM’N’N)\) suy ra \(MN\parallel (DEF)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Hai mặt phẳng song song

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài