Bài 2.20 trang 41 SBT đại số 10


Đề bài

Viết phương trình của parabol \(y = a{x^2} + bx + c\) ứng với mỗi đồ thị dưới đây

Phương pháp giải - Xem chi tiết

Xác định các hệ số \(a,b,c\) dựa vào đồ thị của hàm số.

Lời giải chi tiết

a) Dựa trên đồ thị (h.22) ta thấy parabol có đỉnh \(I( - 3;0)\) và đi qua điểm \((0; - 4)\)

Như vậy \(c =  - 4; - \dfrac{b}{{2a}} =  - 3 \Leftrightarrow b = 6a\).

Thay \(c =  - 4\) và \(b = 6a\) vào biểu thức

\(\Delta  = {b^2} - 4ac = 0\)\( =  > 36{a^2} + 16a = 0 \) \(=  > a =  - \dfrac{4}{9}\) (vì \(a \ne 0)\) và \(b =  - \dfrac{8}{3}\).

Vậy phương trình của parabol là \(y =  - \dfrac{4}{9}{x^2} - \dfrac{8}{3}x - 4\).

b) Dựa trên đồ thị (h.23) ta thấy parabol có đỉnh \(I( - 1; - 1)\) và đi qua điểm \(\left( {\dfrac{1}{2};0} \right)\)

Như vậy \(\left\{ {\begin{array}{*{20}{c}}{\dfrac{1}{4}a + \dfrac{1}{2}b + c = 0}\\{ - \dfrac{b}{{2a}} =  - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{b = 2a}\\{c =  - \dfrac{5}{4}a}\end{array}} \right.\).

Thay vào biểu thức \(\Delta  = {b^2} - 4ac =  - 1 \) \(=  > 4{a^2} + 5a + 1 = 0 =  > a = \dfrac{4}{9}\) (vì \(a > 0)\) \( \Rightarrow b = \dfrac{8}{9};c = \dfrac{{ - 5}}{9}\).

\(y = \dfrac{4}{9}{x^2} + \dfrac{8}{9}x - \dfrac{5}{9}\)

Loigiaihay.com


Bình chọn:
3.8 trên 8 phiếu

Các bài liên quan: - Bài 3: Hàm số bậc hai

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài