Bài 2.18 trang 41 SBT đại số 10


Giải bài 2.18 trang 41 SBT đại số 10. Xác định trục đối xứng, tọa độ đỉnh...

Lựa chọn câu để xem lời giải nhanh hơn

Xác định trục đối xứng, tọa độ đỉnh, giao điểm với trục tung và trục hoành của parabol.

LG a

 \(y = 2{x^2} - x - 2\);

Phương pháp giải:

Đồ thị của hàm số bậc hai \(y = a{x^2} + bx + c\) là một parabol có đỉnh là điểm \(I\left( { - \dfrac{b}{{2a}};\dfrac{{ - \Delta }}{{4a}}} \right)\), có trục đối xứng là \(x =  - \dfrac{b}{{2a}}\).

Lời giải chi tiết:

Ta có \(a = 2;b =  - 1;c =  - 2\).Ta có \(\Delta  = {( - 1)^2} - 4.2.( - 2) = 17\).

Trục đối xứng là đường thẳng \(x = \dfrac{1}{4}\); đỉnh \(I(\dfrac{1}{4}; - \dfrac{{17}}{8})\); giao với trục tung tại điểm \((0;-2)\).

Để tìm giao điểm với trục hoành ta giải phương trình

\(2{x^2} - x - 2 = 0 \Leftrightarrow {x_{1,2}} = \dfrac{{1 \pm \sqrt {17} }}{4}\).

Vậy các giao điểm với trục hoành là \((\dfrac{{1 + \sqrt {17} }}{4};0)\)và\((\dfrac{{1 - \sqrt {17} }}{4};0)\).

LG b

 \(y =  - 2{x^2} - x + 2\);

Phương pháp giải:

Đồ thị của hàm số bậc hai \(y = a{x^2} + bx + c\) là một parabol có đỉnh là điểm \(I\left( { - \dfrac{b}{{2a}};\dfrac{{ - \Delta }}{{4a}}} \right)\), có trục đối xứng là \(x =  - \dfrac{b}{{2a}}\).

Lời giải chi tiết:

 Ta có \(a =  - 2;b =  - 1;c = 2\).Ta có \(\Delta  = {( - 1)^2} - 4.2.( - 2) = 17\).

Trục đối xứng là đường thẳng \(x =  - \dfrac{1}{4}\); đỉnh \(I( - \dfrac{1}{4}; - \dfrac{{17}}{8})\); giao với trục tung tại điểm \((0;-2)\).

Để tìm giao điểm với trục hoành ta giải phương trình

\( - 2{x^2} - x + 2 = 0 \Leftrightarrow \)

\({x_{1,2}} = \dfrac{{ - 1 \pm \sqrt {17} }}{4}\).

Vậy các giao điểm với trục hoành là

\(\left( {\dfrac{{ - 1 + \sqrt {17} }}{4};0} \right)\) và \(\left( {\dfrac{{ - 1 - \sqrt {17} }}{4};0} \right)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 4 phiếu

Các bài liên quan: - Bài 3: Hàm số bậc hai

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài