Bài 2.18 trang 41 SBT đại số 10


Giải bài 2.18 trang 41 SBT đại số 10. Xác định trục đối xứng, tọa độ đỉnh...

Lựa chọn câu để xem lời giải nhanh hơn

Xác định trục đối xứng, tọa độ đỉnh, giao điểm với trục tung và trục hoành của parabol.

LG a

 \(y = 2{x^2} - x - 2\);

Phương pháp giải:

Đồ thị của hàm số bậc hai \(y = a{x^2} + bx + c\) là một parabol có đỉnh là điểm \(I\left( { - \dfrac{b}{{2a}};\dfrac{{ - \Delta }}{{4a}}} \right)\), có trục đối xứng là \(x =  - \dfrac{b}{{2a}}\).

Lời giải chi tiết:

Ta có \(a = 2;b =  - 1;c =  - 2\).Ta có \(\Delta  = {( - 1)^2} - 4.2.( - 2) = 17\).

Trục đối xứng là đường thẳng \(x = \dfrac{1}{4}\); đỉnh \(I(\dfrac{1}{4}; - \dfrac{{17}}{8})\); giao với trục tung tại điểm \((0;-2)\).

Để tìm giao điểm với trục hoành ta giải phương trình

\(2{x^2} - x - 2 = 0 \Leftrightarrow {x_{1,2}} = \dfrac{{1 \pm \sqrt {17} }}{4}\).

Vậy các giao điểm với trục hoành là \((\dfrac{{1 + \sqrt {17} }}{4};0)\)và\((\dfrac{{1 - \sqrt {17} }}{4};0)\).

LG b

 \(y =  - 2{x^2} - x + 2\);

Phương pháp giải:

Đồ thị của hàm số bậc hai \(y = a{x^2} + bx + c\) là một parabol có đỉnh là điểm \(I\left( { - \dfrac{b}{{2a}};\dfrac{{ - \Delta }}{{4a}}} \right)\), có trục đối xứng là \(x =  - \dfrac{b}{{2a}}\).

Lời giải chi tiết:

 Ta có \(a =  - 2;b =  - 1;c = 2\).Ta có \(\Delta  = {( - 1)^2} - 4.2.( - 2) = 17\).

Trục đối xứng là đường thẳng \(x =  - \dfrac{1}{4}\); đỉnh \(I( - \dfrac{1}{4}; - \dfrac{{17}}{8})\); giao với trục tung tại điểm \((0;-2)\).

Để tìm giao điểm với trục hoành ta giải phương trình

\( - 2{x^2} - x + 2 = 0 \Leftrightarrow \)

\({x_{1,2}} = \dfrac{{ - 1 \pm \sqrt {17} }}{4}\).

Vậy các giao điểm với trục hoành là

\(\left( {\dfrac{{ - 1 + \sqrt {17} }}{4};0} \right)\) và \(\left( {\dfrac{{ - 1 - \sqrt {17} }}{4};0} \right)\).

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

Các bài liên quan: - Bài 3: Hàm số bậc hai

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.