Bài 2.14 trang 36 SBT đại số 10


Giải bài 2.14 trang 36 sascg bài tập đại số 10. Viết phương trình đường thẳng...

Lựa chọn câu để xem lời giải nhanh hơn

Lập bảng biến thiên và vẽ đồ thị của môi hàm số

LG a

\(y = |2x - 3|\);

Phương pháp giải:

Sử dụng kiến thức về giá trị tuyệt đối và cách vẽ bảng biến thiên.

Lời giải chi tiết:

 Ta có thể viết

\(y = \left\{ \begin{array}{l}2x - 3,x \ge \dfrac{3}{2}\\ - 2x + 3,x < \dfrac{3}{2}\end{array} \right.\)

Từ đó có bảng biến thiên và đồ thị của hàm số \(y = |2x - 3|\)(h.32)

 

 

LG b

\(y = | - \dfrac{3}{4}x + 1|\)

Phương pháp giải:

Sử dụng kiến thức về giá trị tuyệt đối và cách vẽ bảng biến thiên.

Lời giải chi tiết:

Ta có thể viết

\(y = \left\{ \begin{array}{l} - \dfrac{3}{4}x + 1,x \le \dfrac{4}{3}\\\dfrac{3}{4}x - 1,x > \dfrac{4}{3}\end{array} \right.\)

Bảng biến thiên và đồ thị của hàm số \(y = | - \dfrac{3}{4}x + 1|\)(h.33)

 

 

LG c

\(y = x + |x|\).

Phương pháp giải:

Sử dụng kiến thức về giá trị tuyệt đối và cách vẽ bảng biến thiên.

Lời giải chi tiết:

Với \(x \ge 0\) thì \(y = x + \left| x \right| = x + x = 2x\)

Với \(x < 0\) thì \(y = x + \left| x \right| = x - x = 0\)

Ta có: 

\(\begin{array}{l}
y = x + |x|\; = x + \sqrt {{x^2}} \quad \\
\Rightarrow y' = 1 + \frac{{2x}}{{2\sqrt {{x^2}} }} = 1 + \frac{x}{{|x|}} = \left\{ \begin{array}{l}
2\quad x \ge 0\\
0\quad x < 0
\end{array} \right.
\end{array}\)

\( \Rightarrow y' \ge 0\;\;\forall x\)

Bảng biến thiên:

Đồ thị của hàm số \(y = x + |x|\)được vẽ trên hình.

 

Loigiaihay.com


Bình chọn:
4 trên 10 phiếu

Các bài liên quan: - Bài 2: Hàm số y = ax + b

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.