Bài 1.35 trang 39 SBT đại số và giải tích 11


Giải bài 1.35 trang 39 sách bài tập đại số và giải tích 11. Nghiệm của phương trình cos...

Đề bài

Nghiệm của phương trình \(\cos x\cos 7x=\cos 3x\cos 5x\) là

A. \(\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)

B. \(-\dfrac{\pi}{6}+k2\pi,k\in\mathbb{Z}\)

C. \(k\dfrac{\pi}{4},k\in\mathbb{Z}\)

D. \(k\dfrac{\pi}{3},k\in\mathbb{Z}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức biến đổi tích thành tổng.

Phương trình \(\cos x=\cos \alpha\) có nghiệm là

\(x=\pm\alpha+k2\pi ,k \in \mathbb{Z}\).

Lời giải chi tiết

Ta có: \(\cos x\cos 7x=\cos 3x\cos 5x\)

\(\Leftrightarrow \dfrac{1}{2}{\left[{\cos (7x+x)+\cos(7x-x)}\right]}\)

\(=\dfrac{1}{2}{\left[{\cos (5x+3x)+\cos(5x-3x)}\right]}\)

\(\Leftrightarrow \cos 8x+\cos 6x=\cos 8x+\cos 2x\)

\(\Leftrightarrow \cos 6x=\cos 2x\)

\(\Leftrightarrow \left[ \begin{array}{l} 6x =2x+k2\pi ,k \in \mathbb{Z}\\6x= -2x+k2\pi ,k \in \mathbb{Z}\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l} x = k\dfrac{\pi}{2} ,k \in \mathbb{Z}\\x= k\dfrac{\pi}{4} ,k \in \mathbb{Z}\end{array} \right. \)

Vì tập \({\left\{{k\dfrac{\pi}{2}}\right\}}\subset{\left\{{k\dfrac{\pi}{4}}\right\}}\)

Vậy nghiệm của phương trình là \(k\dfrac{\pi}{4} ,k \in \mathbb{Z}\)

Đáp án: C.

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí