Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 4 - Đại số và Giải tích 11

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 4 - Đại số và Giải tích 11

Đề bài

Câu 1: Giá trị của \(\lim \dfrac{1}{{n + 1}}\) bằng:

A.0                          B. 1

C. 2                         D. 3

Câu 2: Giá trị đúng của \(\lim ({3^n} - {5^n})\) là

A. \( - \infty \)                    B. \( + \infty \)

C. 2                         D. -2

Câu 3: Cho hàm số  có \(\mathop {\lim }\limits_{x \to x_0^{}} f(x) = L\) . Chọn đáp án đúng:

A. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = L\)

B. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) =  - L\)                    

C. \(\mathop {\lim }\limits_{x \to x_0^ - } f(x) = L\)

D. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) =  - \mathop {\lim }\limits_{x \to x_0^ - } f(x)\)

Câu 4: Giá trị đúng của \(\lim (\sqrt[3]{{{n^3} + 9{n^2}}} - n)\) bằng

A. \( + \infty \)                   B. \( - \infty \)

C. 0                        D. 3

Câu 5: Tính giới hạn sau: \(\lim \left[ {\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right)} \right]\)

A.1                         B. \(\dfrac{1}{2}\)

C. \(\dfrac{1}{4}\)                      D. \(\dfrac{3}{2}\)

Câu 6: Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \dfrac{{3x + 2}}{{2x - 1}}\)

A. \( + \infty \)                    B. \( - \infty \)

C. 5                         D.1

Câu 7: Cho hàm số \(f(x) = \left\{ \begin{array}{l}\dfrac{{3 - x}}{{\sqrt {x + 1 - 2} }}\,\,\,\,khi\,\,x \ne 3\\m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 3\end{array} \right.\)  Hàm số đã cho liên tục tại x = 3 khi m bằng :

A.  -4                        B. 4

C.  -1                         D. 1

Câu 8: Giá trị của \(\lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1}  + n}}\)

A. \( - \infty \)                        B. \( + \infty \)

C. 0                             D. 1

Câu 9: Tính giới hạn sau: \(\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{{{\sin }^2}2x - 3\cos x}}{{\tan x}}\)

A. \( + \infty \)                       B. \( - \infty \)

C. \(\dfrac{{3\sqrt 3 }}{4} - \dfrac{9}{2}\)             D. 1

Câu 10: Giá trị của \(\lim \dfrac{{n - 2\sqrt n }}{{2n}}\) bằng

A. \( + \infty \)                       B. \( - \infty \)

C. \(\dfrac{1}{2}\)                         D. 1

Câu 11: Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {(2x + 1)(3x + 1)(4x + 1)}  - 1}}{x}\)

A.\( + \infty \)                      B. \( - \infty \)

C. \(\dfrac{9}{2}\)                         D. 1

Câu 12: Tính \(\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{x + 1}} - 1}}{{\sqrt {2x + 1}  - 1}}\)

A. \( + \infty \)                    B. \( - \infty \)

C. \(\dfrac{1}{3}\)                        D. 0

Câu 13: Kí hiệu nào sau đây không dùng kí hiệu cho dãy số có giới hạn ?

A. \(\lim \,{u_n} = 0\)             B. \(\mathop {\lim }\limits_{n \to  + \infty } \,{u_n} = 0\)

C. \(\mathop {\lim }\limits_{n \to 0} \,{u_n} = 0\)             D. \(\lim \,({u_n}) = 0\)

Câu 14: Cho a và b là các số thực khác 0. Tìm hệ thức liên hệ giữa a và b để hàm số   \(f(x) = \left\{ \begin{array}{l}\dfrac{{\sqrt {ax + 1}  - 1}}{x}\,\,khi\,\,x \ne 0\\4{x^2} + 5b\,\,khi\,\,x = 0\end{array} \right.\) liên tục tại x = 0.

A. a = 5b                     B. a = 10b

C. a = b                       D. a = 2b.

Câu 15: Chọn đáp án đúng:

A. \(\mathop {\lim }\limits_{x \to  + \infty } {x^4} =  + \infty \)

B. \(\mathop {\lim }\limits_{x \to  + \infty } {x^4} =  - \infty \)

C.\(\mathop {\lim }\limits_{x \to  + \infty } ( - {x^4}) =  + \infty \)

D. \(\mathop {\lim }\limits_{x \to  - \infty } ( - {x^4}) =  + \infty \)

Câu 16: Số  là giới hạn phải của hàm số   kí hiệu là:

A. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = L\)

B. \(\mathop {\lim }\limits_{x \to x_0^ - } f(x) = L\)

C. \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = L\)

\(D.\mathop {\lim }\limits_{x \to  - \infty } f(x) = L\)

Câu 17: Cho hàm số\(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{{x^2} - 5x + 6}}{{2{x^3} - 16}},x < 2}\\{2 - x\,\,\,\,\,\,\,\,\,\,\,\,\,,x \ge 2}\end{array}} \right.\). Khẳng định nào sau đây đúng

A.Hàm số liên tục trên \(\mathbb{R}\)

B.Hàm số liên tục tại mọi điểm

C.Hàm số không liên tục trên \((2; + \infty )\)

D.Hàm số gián đoạn tại x = 2

Câu 18: Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{x + 2a\,\,\,\,\,,x < 0}\\{{x^2} + x + 1\,\,,x \ge 0}\end{array}} \right.\) liên tục tại x = 0

A. \(\dfrac{1}{2}\)               B. \(\dfrac{1}{4}\)

C. 0                 D. 1

Câu 19: Cho hàm số\(f(x) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {\dfrac{{{x^2} + 1}}{{{x^3} - x + 6}}} ,\,\,x \ne 3,x \ne 2}\\{b + \sqrt 3 \,\,\,\,\,\,\,\,\,\,\,\,,\,\,x = 3,b \in \mathbb{R}}\end{array}} \right.\). Tìm b để \(f(x)\) liên tục tại x = 3

A. \(\sqrt 3 \)                B. \( - \sqrt 3 \)

C. \(\dfrac{{2\sqrt 3 }}{3}\)             D. \( - \dfrac{{2\sqrt 3 }}{3}\)

Câu 20: Tìm khẳng định đúng trong các khẳng định sau:

I. \(f(x)\) liên tục trên đoạn [a;b] và \(f(a).f(b) < 0\) thì phương trình \(f(x) = 0\) có nghiệm.

II. \(f(x)\) không liên tục trên [a;b] và \(f(a).f(b) \ge 0\) thì phương trình \(f(x) = 0\) vô nghiệm.

A. chỉ I đúng              B. chỉ II đúng

C. cả I và II đúng       D. Cả I và II sai

Câu 21: Giới hạn \(\lim \dfrac{{{2^{n + 1}} - {{3.5}^n} + 5}}{{{{3.2}^n} + {{9.5}^n}}}\)bằng?

A. \(1.\)              B. \(\dfrac{2}{3}.\)   

C. \( - 1.\)           D. \( - \dfrac{1}{3}.\)

Câu 22: Tính \(\mathop {\lim }\limits_{x \to 3} \dfrac{{\sqrt {x + 1}  - 2}}{{\sqrt {3x}  - 3}}\) bằng?

A. \(\dfrac{2}{3}.\)                B. \(\dfrac{1}{3}.\)               

C. \(\dfrac{1}{2}.\)                D. 1.

Câu 23: Giới hạn \(\lim \dfrac{{2{n^2} - n + 4}}{{\sqrt {2{n^4} - {n^2} + 1} }}\)bằng?

A. \(1.\)                     B. \(\sqrt 2 .\)  

C. \(2.\)                     D. \(\dfrac{1}{{\sqrt 2 }}.\) 

Câu 24: Tính \(\mathop {\lim }\limits_{x \to 2} \dfrac{{x - \sqrt {x + 2} }}{{\sqrt {4x + 1}  - 3}}\)bằng?

A. \(\dfrac{1}{2}.\)             B. \(\dfrac{9}{8}.\)   

C. \(1.\)               D. \(\dfrac{3}{4}.\)

Câu 25: Giới hạn \(\lim \left( {\sqrt {{n^2} - n}  - n} \right)\)bằng?

A. \( - \infty .\)             B. \( - \dfrac{1}{2}.\)

C. \(0.\)                   D.  \( + \infty .\)

Lời giải chi tiết

1 2 3 4 5
A A A D B
6 7 8 9 10
C A C C C
11 12 13 14 15
C C C B A
16 17 18 19 20
A D A D A
21 22 23 24 25
D C B B B

 

Câu 1: Đáp án A

\(\lim \dfrac{1}{{n + 1}} = \lim \dfrac{{\dfrac{1}{n}}}{{1 + \dfrac{1}{n}}} = \dfrac{0}{1} = 0\)

Câu 2: Đáp án A

\(\lim ({3^n} - {5^n}) = \lim {5^n}\left( {{{\left( {\dfrac{3}{5}} \right)}^n} - 1} \right) =  - \infty \) là

Câu 3: Đáp án A

Câu 4: Đáp án D           

\(\begin{array}{l}\lim (\sqrt[3]{{{n^3} + 9{n^2}}} - n)\\ = \lim \dfrac{{\left( {\sqrt[3]{{{n^3} + 9{n^2}}} - n} \right)\left( {\sqrt[3]{{{{\left( {{n^3} + 9{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 9{n^2}}} + {n^2}} \right)}}{{\sqrt[3]{{{{\left( {{n^3} + 9{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 9{n^2}}} + {n^2}}}\\ = \lim \dfrac{{{n^3} + 9{n^2} - {n^3}}}{{\sqrt[3]{{{{\left( {{n^3} + 9{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 9{n^2}}} + {n^2}}}\\ = \lim \dfrac{{9{n^2}}}{{\sqrt[3]{{{{\left( {{n^3} + 9{n^2}} \right)}^2}}} + n\sqrt[3]{{{n^3} + 9{n^2}}} + {n^2}}}\\ = \lim \dfrac{9}{{\sqrt[3]{{{{\left( {1 + \dfrac{9}{n}} \right)}^2}}} + \sqrt[3]{{1 + \dfrac{9}{n}}} + 1}} = \dfrac{9}{3} = 3\end{array}\)

Câu 5: Đáp án B

Ta có \(1 - \dfrac{1}{{{k^2}}} = \dfrac{{\left( {k - 1} \right)\left( {k + 1} \right)}}{{{k^2}}}\) nên ta suy ra

\(\begin{array}{l}\left[ {\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right)} \right]\\ = \dfrac{{1.3}}{{{2^2}}}.\dfrac{{2.4}}{{{3^2}}}...\dfrac{{\left( {n - 1} \right)\left( {n + 1} \right)}}{{{n^2}}} = \dfrac{{\left( {n + 1} \right)}}{{2n}}\end{array}\)

\(\lim \left[ {\left( {1 - \dfrac{1}{{{2^2}}}} \right)\left( {1 - \dfrac{1}{{{3^2}}}} \right)...\left( {1 - \dfrac{1}{{{n^2}}}} \right)} \right] = \lim \dfrac{{n + 1}}{{2n}} = \dfrac{1}{2}\)

Câu 6: Đáp án C

\(\mathop {\lim }\limits_{x \to 1} \dfrac{{3x + 2}}{{2x - 1}} = \dfrac{{3 + 2}}{{2.1 - 1}} = 5\)

Câu 7: Đáp án A

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \dfrac{{3 - x}}{{\sqrt {x + 1}  - 2}}\\ = \mathop {\lim }\limits_{x \to 3} \dfrac{{(3 - x)\sqrt {x + 1}  + 2}}{{x - 3}}\\ = \mathop {\lim }\limits_{x \to 3} ( - \sqrt {x + 1}  + 2) =  - 4\end{array}\)

Để hàm số đã cho liên tục tại x = 3  thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f(3) \Leftrightarrow m =  - 4\)

Câu 8: Đáp án C

\(\begin{array}{l}\lim \dfrac{{\sqrt[4]{{3{n^3} + 1}} - n}}{{\sqrt {2{n^4} + 3n + 1}  + n}}\\ = \lim \dfrac{{{n^2}\left( {\sqrt[4]{{\dfrac{3}{{{n^5}}} + \dfrac{1}{{{n^8}}}}} - \dfrac{1}{n}} \right)}}{{{n^2}\left( {\sqrt {2 + \dfrac{3}{n} + \dfrac{1}{{{n^2}}}}  + \dfrac{1}{n}} \right)}}\\ = \lim \dfrac{{\left( {\sqrt[4]{{\dfrac{3}{{{n^5}}} + \dfrac{1}{{{n^8}}}}} - \dfrac{1}{n}} \right)}}{{\left( {\sqrt {2 + \dfrac{3}{n} + \dfrac{1}{{{n^2}}}}  + \dfrac{1}{n}} \right)}} = \dfrac{0}{{\sqrt 2 }} = 0\end{array}\)

Câu 9: Đáp án C

\(\mathop {\lim }\limits_{x \to \dfrac{\pi }{6}} \dfrac{{{{\sin }^2}2x - 3\cos x}}{{\tan x}} = \dfrac{{\dfrac{3}{4} - \dfrac{{3\sqrt 3 }}{2}}}{{\dfrac{1}{{\sqrt 3 }}}} = \dfrac{{3\sqrt 3 }}{4} - \dfrac{9}{2}\)

Câu 10: Đáp án C

\(\lim \dfrac{{n - 2\sqrt n }}{{2n}} = \lim \dfrac{{1 - \dfrac{2}{{\sqrt n }}}}{2} = \dfrac{1}{2}\)

Câu 11: Đáp án C

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {(2x + 1)(3x + 1)(4x + 1)}  - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{(2x + 1)(3x + 1)(4x + 1) - 1}}{{x.(\sqrt {(2x + 1)(3x + 1)(4x + 1)}  + 1)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{24{x^3} + 26{x^2} + 9x}}{{x.(\sqrt {(2x + 1)(3x + 1)(4x + 1)}  + 1)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{24{x^2} + 26x + 9}}{{(\sqrt {(2x + 1)(3x + 1)(4x + 1)}  + 1)}} = \dfrac{9}{2}\end{array}\)

Câu 12: Đáp án C

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt[3]{{x + 1}} - 1}}{{\sqrt {2x + 1}  - 1}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt[3]{{x + 1}} - 1} \right)\left( {\sqrt[3]{{{{(x + 1)}^2}}} + \sqrt[3]{{x + 1}} - 1} \right)\left( {\sqrt {2x + 1}  + 1} \right)}}{{\left( {\sqrt {2x + 1}  - 1} \right)\left( {\sqrt {2x + 1}  + 1} \right)\left( {\sqrt[3]{{{{(x + 1)}^2}}} + \sqrt[3]{{x + 1}} - 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {2x + 1}  + 1} \right)}}{{2x\left( {\sqrt[3]{{{{(x + 1)}^2}}} + \sqrt[3]{{x + 1}} - 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {2x + 1}  + 1} \right)}}{{2\left( {\sqrt[3]{{{{(x + 1)}^2}}} + \sqrt[3]{{x + 1}} - 1} \right)}} = \dfrac{2}{{2(1 + 1 + 1)}} = \dfrac{1}{3}\end{array}\)

Câu 13: Đáp án C

Câu 14: Đáp án B

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {{\rm{ax + 1}}}  - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{ax}}{{x\left( {\sqrt {{\rm{ax + 1}}}  + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{a}{{\left( {\sqrt {{\rm{ax + 1}}}  + 1} \right)}} = \dfrac{a}{2}\end{array}\)

\(f\left( 0 \right) = {4.0^2} + 5b = 5b\)

để hàm số f(x) liên tục tại x = 0 thì  \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow \dfrac{a}{2} = 5b \Rightarrow a = 10b\)

Câu 15: Đáp án A

Câu 16: Đáp án A

Câu 17: Đáp án D

\(f\left( x \right) = \dfrac{{{x^2} - 5x + 6}}{{2{x^3} - 16}}\) liên tục trên \(\left( { - \infty ,2} \right)\)

\(f\left( x \right) = 2 - x\) liên tục trên \(\left( {2, + \infty } \right)\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{{x^2} - 5x + 6}}{{2({x^3} - 8)}}\\ = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{\left( {x - 2} \right)\left( {x - 3} \right)}}{{2(x - 2)\left( {{x^2} + x + 4} \right)}}\\ = \mathop {\lim }\limits_{x \to {2^ - }} \dfrac{{\left( {x - 3} \right)}}{{2\left( {{x^2} + x + 4} \right)}} = \dfrac{{ - 1}}{{12}}\end{array}\)

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {2 - x} \right) = \mathop {\lim }\limits_{x \to {2^ + }} \dfrac{{4 - {x^2}}}{{2 + x}} = 0\)

Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\)nên hàm số f(x) gián đoạn tại x=2

Câu 18: Đáp án A

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} + x + 1} \right) = 1\\\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {x + 2a} \right) = 2a\end{array}\)

Để hàm số liên tục tại x = 0 thì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) \Leftrightarrow 1 = 2a \Leftrightarrow a = \dfrac{1}{2}\)

Câu 19: Đáp án D

\(f\left( 3 \right) = b + \sqrt 3 \)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \sqrt {\dfrac{{{x^2} + 1}}{{\left( {x + 2} \right)\left( {{x^2} - 2x + 3} \right)}}} \\ = \sqrt {\dfrac{{10}}{{5(9 - 6 + 3)}}}  = \dfrac{{\sqrt 3 }}{3}\end{array}\)

Để hàm số liên tục tại x = 3 thì \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right) \Leftrightarrow \dfrac{{\sqrt 3 }}{3} = b + \sqrt 3  \Rightarrow b = \dfrac{{ - 2\sqrt 3 }}{3}\)

Câu 20: Đáp án A

Câu 21: Đáp án D

\(\lim \dfrac{{{2^{n + 1}} - {{3.5}^n} + 5}}{{{{3.2}^n} + {{9.5}^n}}} = \lim \dfrac{{2.{{\left( {\dfrac{2}{5}} \right)}^n} - 3. + \dfrac{5}{{{5^n}}}}}{{3.{{\left( {\dfrac{2}{5}} \right)}^n} + 9}} = \dfrac{{ - 1}}{3}\)

Câu 22: Đáp án C

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 3} \dfrac{{\sqrt {x + 1}  - 2}}{{\sqrt {3x}  - 3}}\\ = \mathop {\lim }\limits_{x \to 3} \dfrac{{\left( {\sqrt {x + 1}  - 2} \right)\left( {\sqrt {x + 1}  + 2} \right)\left( {\sqrt {3x}  + 3} \right)}}{{\left( {\sqrt {3x}  - 3} \right)\left( {\sqrt {3x}  + 3} \right)\left( {\sqrt {x + 1}  + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 3} \dfrac{{\left( {x - 3} \right)\left( {\sqrt {3x}  + 3} \right)}}{{3\left( {x - 3} \right)\left( {\sqrt {x + 1}  + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 3} \dfrac{{\left( {\sqrt {3x}  + 3} \right)}}{{3\left( {\sqrt {x + 1}  + 2} \right)}} = \dfrac{1}{2}\end{array}\)

Câu 23: Đáp án B

\(\begin{array}{l}\lim \dfrac{{2{n^2} - n + 4}}{{\sqrt {2{n^4} - {n^2} + 1} }}\\ = \lim \dfrac{{{n^2}\left( {2 - \dfrac{1}{n} + \dfrac{4}{{{n^2}}}} \right)}}{{{n^2}\left( {\sqrt {2 - \dfrac{1}{{{n^2}}} + \dfrac{1}{{{n^4}}}} } \right)}}\\ = \lim \dfrac{{\left( {2 - \dfrac{1}{n} + \dfrac{4}{{{n^2}}}} \right)}}{{\left( {\sqrt {2 - \dfrac{1}{{{n^2}}} + \dfrac{1}{{{n^4}}}} } \right)}} = \sqrt 2 \end{array}\)

Câu 24: Đáp án B

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} \dfrac{{x - \sqrt {x + 2} }}{{\sqrt {4x + 1}  - 3}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - \sqrt {x + 2} } \right)\left( {x + \sqrt {x + 2} } \right)\left( {\sqrt {4x + 1}  + 3} \right)}}{{\left( {\sqrt {4x + 1}  - 3} \right)\left( {\sqrt {4x + 1}  + 3} \right)\left( {x + \sqrt {x + 2} } \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {{x^2} - x - 2} \right)\left( {\sqrt {4x + 1}  + 3} \right)}}{{\left( {4x - 8} \right)\left( {x + \sqrt {x + 2} } \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x + 1} \right)\left( {x - 2} \right)\left( {\sqrt {4x + 1}  + 3} \right)}}{{4\left( {x - 2} \right)\left( {x + \sqrt {x + 2} } \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x + 1} \right)\left( {\sqrt {4x + 1}  + 3} \right)}}{{4\left( {x + \sqrt {x + 2} } \right)}} = \dfrac{9}{8}\end{array}\)

Câu 25: Đáp án B

\(\lim \left( {\sqrt {{n^2} - n}  - n} \right) = \lim \dfrac{{ - n}}{{\sqrt {{n^2} - n}  + n}} = \lim \dfrac{{ - 1}}{{\sqrt {1 - \dfrac{1}{n}}  + 1}} = \dfrac{{ - 1}}{2}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương IV - Đại số và Giải tích 11 Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương IV - Đại số và Giải tích 11

Đáp án và lời giải chi tiết Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương IV - Đại số và Giải tích 11

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 4 - Đại số  và Giải tích 11 Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 4 - Đại số và Giải tích 11

Đáp án và lời giải chi tiết Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 4 - Đại số và Giải tích 11

Xem chi tiết
Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Đại số  và Giải tích 11 Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Đại số và Giải tích 11

Đáp án và lời giải chi tiết Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Đại số và Giải tích 11

Xem chi tiết
Đề kiểm tra 15 phút - Đề số 1 - Chương 5 - Đại số và Giải tích 11 Đề kiểm tra 15 phút - Đề số 1 - Chương 5 - Đại số và Giải tích 11

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Đề số 1 - Chương 5 - Đại số và Giải tích 11

Xem chi tiết
Lý thuyết cấp số cộng Lý thuyết cấp số cộng

1. Định nghĩa

Xem chi tiết
Lý thuyết phép vị tự Lý thuyết phép vị tự

Phép vị tự biến tâm vị tự thành chính nó Khi k=1, phép vị tự là phép đồng nhất Khi k = -1, phép vị tự là phép đối xứng qua tâm vị tự

Xem chi tiết
Lý thuyết hàm số lượng giác Lý thuyết hàm số lượng giác

1. Hàm số y = sin x và hàm số y = cos x

Xem chi tiết
Bài 2 trang 103 SGK Đại số và Giải tích 11 Bài 2 trang 103 SGK Đại số và Giải tích 11

Giải bài 2 trang 103 SGK Đại số và Giải tích 11. Cho cấp số nhân với công bội q.

Xem chi tiết

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng