Đề kiểm tra 15 phút - Đề số 3 - Chương 1 - Hình học 11

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Đề số 3 - Chương 1 - Hình học 11

Đề bài

Câu 1: Trong các mệnh đề sau, mệnh đề nào đúng?

A. Phép đối xứng tâm không có điểm nào biến thành chính nó .

B. Phép đối xứng tâm có đúng 1 điểm biến thành chính nó

C. Có phép đối xứng tâm có 2 điểm biến thành chính nó.

D. Có phép đối xứng tâm có vô số điểm biến thành chính nó.

Câu 2: Hình nào sau đây không có tâm đối xứng ?

A. Hình vuông              B. Hình tròn

C. Hình tam giác đều    D. Hình thoi

Câu 3: Khẳng định nào sau đây đúng về phép đối xứng tâm:

A. Nếu \(OM = OM'\) thì \(M'\)là ảnh của M qua phép đối xứng tâm O.

B. Nếu \(\overrightarrow {OM}  =  - \overrightarrow {OM'} \) thì \(M'\) là ảnh của M qua phép đối xứng tâm O.

C. Phép quay là phép đối xứng tâm.

D. Phép đối xứng tâm không phải là một phép quay.

Câu 4: Ảnh của điểm M ( 3;-1) qua phép đối xứng tâm I ( 1;2) là:

A. (2;1)                          B. ( -1;5)

C. (-1;3)                        D. (5;-4)

Câu 5: Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(d:x = 2\). Trong các đường thẳng sau đường thẳng nào là ảnh của d qua phép đối xứng tâm O?

A. x = -2                        B. y = 2

C. x = 2                         D. y = -2

Câu 6: Cho điểm I (1;1) và đường thẳng \(d:x + 2y + 3 = 0\). Tìm ảnh của d qua phép đối xứng tâm I.

A. \(d':x + y - 3 = 0\)    

B. \(d':x + 2y - 7 = 0\)

C. \(d':2x + 2y - 3 = 0\)

D. \(d':x + 2y - 3 = 0\)

Câu 7: Trong mặt phẳng Oxy, ảnh của điểm A ( 5;3) qua phép đối xứng tâm I (4;1) là:

A. \(A'(5;3).\)                B. \(A'( - 5; - 3).\)

C. \(A'(3; - 1).\)             D. \(A'(\dfrac{9}{2};2).\)

Câu 8: Trong mặt phẳng Oxy, ảnh của đường tròn \((C):{(x - 3)^2} + {(y + 1)^2} = 9\) qua phép đối xứng tâm O (0;0) là đường tròn :

A. \((C'):{(x - 3)^2} + {(y + 1)^2} = 9\)

B. \((C'):{(x + 3)^2} + {(y + 1)^2} = 9\)

C. \((C'):{(x - 3)^2} + {(y - 1)^2} = 9\)

D. \((C'):{(x + 3)^2} + {(y - 1)^2} = 9\)

Câu 9: Trong mặt phẳng Oxy, ảnh của đường tròn \((C):{x^2} + {y^2} = 1\) qua phép đối xứng tâm I ( 1;0).

A. \((C'):{(x - 2)^2} + {y^2} = 1\)

B. \((C'):{(x + 2)^2} + {y^2} = 1\)

C. \((C'):{x^2} + {(y + 2)^2} = 1\)

D. \((C'):{x^2} + {(y - 2)^2} = 1\)

Câu 10: Tìm tâm đối xứng của đường cong ( C ) có phương trình \(y = {x^3} - 3{x^2} + 3\).

A. I ( 2;1)                       B. I ( 2;2)

C. I (1;1)                        D. I(1;2)

Lời giải chi tiết

Câu

1

2

3

4

5

6

7

8

9

10

Đáp án

B

C

B

B

A

D

C

D

A

C

Câu 1:

Phép đối xứng tâm có đúng 1 điểm biến thành chính nó, điểm đó là tâm đối xứng.

Chọn B.

Câu 2:

+ Hình vuông có tâm đối xứng là giao điểm của hai đường chéo.

+ Hình tròn có tâm đối xứng chính là tâm của hình tròn đó.

+ Hình thoi có tâm đối xứng là giao điểm của hai đường chéo.

+ Tam giác đều không có tâm đối xứng

Chọn C.

Câu 3:

+ \(\overrightarrow {OM}  =  - \overrightarrow {OM'} \)thì O là trung điểm của đoạn thẳng \(MM'\). Do đó \(M'\) là ảnh của M qua phép đối xứng tâm O.

Chọn B.

Câu 4:

Gọi \(M'(x';y')\) là ảnh của M qua ĐI

Khi đó: \(\left\{ {\begin{array}{*{20}{c}}{x' = 2a - x = 2.1 - 3 =  - 1}\\{y' = 2b - y = 2.2 + 1 = 5}\end{array} \Rightarrow M'( - 1;5)} \right.\)

Chọn B.

Câu 5:

Gọi \(d'\) là ảnh của d qua Đ­­O

Lấy điểm M ( x;y) tùy ý thuộc d, ta có x = 2 (1)

Gọi \(M'(x';y')\)= ĐO (M) \( \Rightarrow M' \in d'\)

Do ĐO(M)= \(M'\) nên \(\left\{ {\begin{array}{*{20}{c}}{x' =  - x}\\{y' =  - y}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x =  - x'}\\{y =  - y'}\end{array}} \right.\)

Thay vào (1) ta được : \( - x' = 2 \Leftrightarrow x' =  - 2\)

Mà \(M' \in d'\) nên phương trình đường thẳng \(d'\) là: x = - 2.

Chọn A.

Câu 6:

Gọi \(d'\) là ảnh của d qua phép đối xứng tâm I

Lấy điểm \(M(x;y) \in d\) tùy ý, ta có \(x + 2y + 3 = 0\) (1)

Gọi \(M'\left( {x';y'} \right)\)= ĐI (M) \( \Rightarrow M' \in d'\)

Do ĐI (M) = \(M'\) nên \(\left\{ {\begin{array}{*{20}{c}}{x' = 2 - x}\\{y' = 2 - y}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2 - x'}\\{y = 2 - y'}\end{array}} \right.\)

Thay vào (1) ta được: \(\left( {2 - x'} \right) + 2\left( {2 - y'} \right) + 3 = 0 \Leftrightarrow x' + 2y' - 9 = 0\)

Mà \(M' \in d'\) nên phương trình đường thẳng \(d'\) là : x + 2y -9 = 0

Chọn D.

Câu 7:

Gọi \(A'\left( {x';y'} \right)\)= ĐI (A)

Khi đó : \(\left\{ {\begin{array}{*{20}{c}}{x' = 2a - x}\\{y' = 2b - y}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = 2.4 - 5 = 3}\\{y' = 2.1 - 3 =  - 1}\end{array}} \right. \Rightarrow A'\left( {3; - 1} \right)\)

Chọn C.

Câu 8:

Gọi \(C'\)= ĐO (C) . Lấy \(M(x;y) \in (C)\) tùy ý , ta có \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} = 9\,\,(1)\)

Gọi \(M'(x';y')\)= ĐO (M) \( \Rightarrow M' \in \left( {C'} \right)\)

Vì ĐO (M) = \(M'\) nên : \(\left\{ {\begin{array}{*{20}{c}}{x' =  - x}\\{y' =  - y}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x =  - x'}\\{y =  - y'}\end{array}} \right.} \right.\)

Thay vào (1) ta được: \({\left( { - x' - 3} \right)^2} + {\left( { - y' + 1} \right)^2} = 9 \Leftrightarrow {\left( {x' + 3} \right)^2} + {\left( {y' - 1} \right)^2} = 9\)

Mà \(M' \in \left( {C'} \right)\)

Vậy phương trình đường tròn \((C')\)là: \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} = 9\)

Chọn D.

Câu 9: Gọi \((C')\)= ĐI (C)

Lấy \(M(x;y) \in (C)\)tùy ý, ta có\({x^2} + {y^2} = 1\,\,(1)\)

Gọi \(M'(x';y')\)= ĐI (M) \( \Rightarrow M' \in \left( {C'} \right)\)

Vì ĐI (M) = \(M'\) nên  \(\left\{ {\begin{array}{*{20}{c}}{x' = 2 - x}\\{y' =  - y}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2 - x'}\\{y =  - y'}\end{array}} \right.} \right.\)

Thay vào (1) ta được : \({\left( {2 - x'} \right)^2} + {\left( { - y'} \right)^2} = 1 \Leftrightarrow {\left( {x' - 2} \right)^2} + {y'^2} = 1\)

Mà \(M' \in \left( {C'} \right)\)

Vậy phương trình đường tròn \((C')\)là: \({\left( {x - 2} \right)^2} + {y^2} = 1\)

Chọn A

Câu 10:

Lấy \(M(x;y) \in (C)\)tùy ý, ta có \(y = {x^3} - 3{x^2} + 3\,\,(1)\)

Gọi \(I(a;b)\) là tâm đối xứng của (C) và \(M'(x';y')\) là ảnh của M qua phép đối xứng tâm I.

Khi đó ta có \(\left\{ {\begin{array}{*{20}{c}}{x' = 2a - x}\\{y' = 2b - y}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2a - x'}\\{y = 2b - y'}\end{array}} \right.} \right.\)

Thay vào (1) ta được: \(\begin{array}{l}2b - y' = {\left( {2a - x'} \right)^3} - 3{\left( {2a - x'} \right)^2} + 3\\ \Leftrightarrow y' = {{x'}^3} - 3{{x'}^2} + 3 + \left( {6 - 6a} \right){{x'}^2} + \left( {12{a^2} - 12a} \right)x' - 8{a^3} + 12{a^2} + 2b - 6\,\,(2)\end{array}\)

Mà \(M' \in \left( C \right)\) nên \(y' = {x'^3} - 3{x'^2} + 3\)

Thay vào (2) ta được:

\(\begin{array}{l}\left( {6 - 6a} \right){{x'}^2} + \left( {12{a^2} - 12a} \right)x' - 8{a^3} + 12{a^2} + 2b - 6 = 0\,\,,\forall x'\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{6 - 6a = 0}\\{12{a^2} - 12a = 0}\\{ - 8{a^3} + 12{a^2} + 2b - 6 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 1}\end{array}} \right. \Rightarrow I\left( {1;1} \right)\end{array}\)

Vậy I ( 1;1) là tâm đối xứng của (C)

Chọn C.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng