Đề kiểm tra 15 phút – Chương 3 – Đề số 1 – Đại số và giải tích 11


Đáp án và lời giải chi tiết Đề kiểm tra 15 phút – Chương 3 – Đề số 1 – Đại số và giải tích 11

Đề bài


Câu 1: Cho dãy sốvới \({u_n} = \dfrac{{a{n^2}}}{{n + 1}}\) (a: hằng số ). \({u_{n + 1}}\) là số hạng nào?A.    \({u_{n + 1}} = \dfrac{{a.{{(n + 1)}^2}}}{{n + 2}}\)       

B. \({u_{n + 1}} = \dfrac{{a.{{(n + 1)}^2}}}{{n + 1}}\)          

C. \({u_{n + 1}} = \dfrac{{a.{n^2} + 1}}{{n + 1}}\) 

D. \({u_{n + 1}} = \dfrac{{a.{n^2}} }{ {n + 2}}\)

Câu 2: Xét tính tăng giảm của dãy số sau: \({u_n} = \dfrac{{3{n^2} - 2n + 1}}{{n + 1}}\)

A. Dãy số tăng           

C. Dãy số không tăng không giảm

B.  Dãy số giảm          

D. Cả A,B,C đều sai

Câu 3: Cho dãy số có các số hạng đầu là: 5;10;15;20;25;… Số hạng tổng quát của dãy số này là:

A. \({u_n} = 5(n - 1)\)           

B. \({u_n} = 5.n + 1\)             

C. \({u_n} = 5 + n\)               

D. \({u_n} = 5n\)

Câu 4: Xét tính tăng giảm của dãy số sau: \({u_n} = n - \sqrt {{n^2} - 1} \)

A. Dãy số tăng    

B. Dãy số giảm 

C. Dãy số không tăng không giảm

D. Cả A ,B,C đều sai

Câu 5: Cho dãy số với \(\left\{ {\begin{array}{*{20}{c}}{{u_1} =  - 2}\\{{u_{n + 1}} =  - 2 - \dfrac{1}{{{u_n}}}}\end{array}} \right.\) Công thức số hạng tổng quát của dãy số này là :

A.  \({u_n} =  - \dfrac{{n - 1}}{n}\)   

B. \({u_n} = \dfrac{{n + 1}}{n}\)     

C. \(u_n=\dfrac{1}{n}\)  

D. \({u_n} =  - \dfrac{{n + 1}}{n}\)

Câu 6: Xét tính tăng giảm của dãy số sau: \({u_n} = \dfrac{{n + {{( - 1)}^n}}}{{{n^2}}}\)

A.    Dãy số tăng                                                  C. Dãy số không tăng không giảm

B.     Dãy số giảm                                                  D. Cả A , B, C đều sai

Câu 7: Cho dãy số \(({u_n})\)với \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 5}\\{{u_{n + 1}} = {u_n} + n}\end{array}} \right.\). Số hạng tổng quát \({u_n}\)của dãy số là số hạng nào dưới đây ?

A.    \({u_n} = \dfrac{{(n - 1)n}}{2}\)   

C. \({u_n} = 5 + \dfrac{{(n + 1)n}}{2}\)

B.     \({u_n} = 5 + \dfrac{{(n - 1)n}}{2}\) 

D. \({u_n} = 5 + \dfrac{{(n + 1)(n + 2)}}{2}\)

Câu 8: Xét tính tăng, giảm và bị chặn của dãy số \(({u_n})\)biết : \({u_n} = 1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + ... + \dfrac{1}{{{n^2}}}\)

A.    Dãy số tăng, bị chặn                                     C. Dãy số giảm, bị chặn trên

B.     Dãy số tăng, bị chặn dưới                            D. CảA,B,C đều sai

Câu 9: Dãy số \({u_n} = \dfrac{{{n^2} + 3n + 7}}{{n + 1}}\) có bao nhiêu số hạng nhận giá trị nguyên

A.    2                                 B. 4                               C. 1                               D. Không có

Câu 10: Xét tính bị chặn của dãy số sau: \({u_n} = {( - 1)^n}\)

A.    Bị chặn                    B. Không bị chặn          C. Bị chặn trên             D. Bị chặn dưới

 

Lời giải chi tiết

1 2 3 4 5
A A D B D
6 7 8 9 10
C B A C A

Lời giải chi tiết:

Câu 1: 

Ta có: \({u_n} = \dfrac{{a{n^2}}}{{n + 1}} \Rightarrow {u_{n + 1}} = \dfrac{{a{{\left( {n + 1} \right)}^2}}}{{n + 2}}\)

Chọn đáp án A.

Câu 2:

Ta có: \({u_n} = \dfrac{{3{n^2} - 2n + 1}}{{n + 1}} \Rightarrow {u_{n + 1}} = \dfrac{{3{{\left( {n + 1} \right)}^2} - 2\left( {n + 1} \right) + 1}}{{n + 2}}\)\( \Rightarrow {u_{n + 1}} = \dfrac{{{u_n} + 6n + 1}}{{n + 2}}\)

\( \Rightarrow {u_{n + 1}} - {u_n} = \dfrac{{{u_n} + 6n + 1}}{{n + 2}} - {u_n} = \dfrac{{n{u_n} - {u_n} + 6n + 1}}{{n + 2}} > 0\)

Dãy số tăng.

Chọn đáp án A.

Câu 3: 

Số hạng tổng quát của dãy số này là:\({u_n} = 5n\)

Chọn đáp án D.

Câu 4:

Ta có: \({u_n} = n - \sqrt {{n^2} - 1} \) \( \Rightarrow {u_{n + 1}} = n + 1 - \sqrt {{{\left( {n + 1} \right)}^2} - 1}  = n + 1 - \sqrt {{n^2} + 2n} \)

\( \Rightarrow {u_{n + 1}} - {u_n} = \left( {n + 1 - \sqrt {{n^2} + 2n} } \right)\)\(\, - \left( {n - \sqrt {{n^2} - 1} } \right) = \sqrt {{n^2} - 1}  - \sqrt {{n^2} + 2n}  + 1 < 0\)

Dãy số giảm.

Chọn đáp án B.

Câu 5:

Ta có: \(\left\{ \begin{array}{l}{u_1} =  - \dfrac{2}{1}\\{u_2} =  - \dfrac{3}{2}\\{u_3} =  - \dfrac{4}{3}\end{array} \right.\quad  \Rightarrow {u_n} =  - \dfrac{{n + 1}}{n}\)

Chọn đáp án D.

Câu 6: 

Ta có: \({u_n} = \dfrac{{n + {{( - 1)}^n}}}{{{n^2}}} \Rightarrow {u_{n + 1}} = \dfrac{{n + 1 - {{\left( { - 1} \right)}^n}}}{{{{\left( {n + 1} \right)}^2}}}\)

\( \Rightarrow {u_{n + 1}} - {u_n} = \dfrac{{n + 1 - {{\left( { - 1} \right)}^n}}}{{{{\left( {n + 1} \right)}^2}}} - \dfrac{{n + {{( - 1)}^n}}}{{{n^2}}}\)

\(= \dfrac{{{n^3} + {n^2} - {n^2}{{\left( { - 1} \right)}^n} - \left( {{n^3} + 2{n^2} + n} \right) - {{\left( { - 1} \right)}^n}{{\left( {n + 1} \right)}^2}}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\)

\( = \dfrac{{ - {n^2} - {{\left( { - 1} \right)}^n}\left( {2{n^2} + 2n + 1} \right) - n}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\)

+ n lẻ ta có: \({u_{n + 1}} - {u_n} = \dfrac{{ - {n^2} + 2{n^2} + 2n + 1 - n}}{{{n^2}{{\left( {n + 1} \right)}^2}}} = \dfrac{{{n^2} + n + 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}} > 0\)

+ n chẵn ta có: \({u_{n + 1}} - {u_n} = \dfrac{{ - {n^2} - 2{n^2} - 2n - 1 - n}}{{{n^2}{{\left( {n + 1} \right)}^2}}}\)\(\, = \dfrac{{ - 3{n^2} - 3n - 1}}{{{n^2}{{\left( {n + 1} \right)}^2}}} < 0\)

Dãy số không tăng không giảm.

Chọn đáp án C.

Câu 7: 

Ta có: \(\left\{ \begin{array}{l}{u_1} = 5\\{u_2} = 6\\{u_3} = 8\\{u_4} = 11\end{array} \right.\quad  \Rightarrow {u_n} = 5 + \dfrac{{n\left( {n - 1} \right)}}{2}\)

Chọn đáp án B.

Câu 8: 

Ta có: \({u_{n + 1}} - {u_n} = \dfrac{1}{{{{\left( {n + 1} \right)}^2}}} > 0 \Rightarrow \left( {{u_n}} \right)\) là dãy số tăng

\({u_n} < 1 + \dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} +  \ldots  + \dfrac{1}{{\left( {n - 1} \right)n}} = 2 + \dfrac{1}{n}\)

\( \Rightarrow 1 < {u_n} < 3 \Rightarrow \left( {{u_n}} \right)\) bị chặn

Chọn đáp án A.

Câu 9: 

Ta có: \({u_n} = \dfrac{{{n^2} + 3n + 7}}{{n + 1}} = \dfrac{{{n^2} + 2n + 1 + n + 6}}{{n + 1}} = n + 2 + \dfrac{5}{{n + 1}}\)

Nhận thấy chỉ có \({u_4}\) nhận giá trị nguyên

Chọn đáp án C.

Câu 10: 

Ta có: \({u_n} = {( - 1)^n}\)

+ Với n lẻ ta có \({u_n} =  - 1\)

+ Với n chẵn ta có: \({u_n} = 1\)

Vậy \({u_n} \in \left\{ { - 1;1} \right\}\)

Chọn đáp án A.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến luyện thi THPTQG, Đại học 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.


Gửi bài