Câu 3.20 trang 143 sách bài tập Giải tích 12 Nâng cao>
Giả sử khi áp dụng công thức nguyên hàm từng phần, ta dẫn đến
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Giả sử khi áp dụng công thức nguyên hàm từng phần, ta dẫn đến
\(\int {f\left( x \right)} dx = aG\left( x \right) - b\int {f\left( x \right)} dx\)
Với \(b \ne 1\)
Chứng minh rằng
\(\int {f\left( x \right)} dx = {{aG\left( x \right)} \over {b + 1}} + C\) với C là hằng số.
Lời giải chi tiết
Ta có: \(\int {f\left( x \right)dx + b} \int {f\left( x \right)} dx = aG\left( x \right) + {C_1}\) (\({C_1}\) là hằng số nào đó).
Hay \(\left( {b + 1} \right)f\left( x \right)dx = aG\left( x \right) + {C_1}\)
Do đó: \(\int {f\left( x \right)dx} = {{aG\left( x \right)} \over {b + 1}} + {{{C_1}} \over {b + 1}} = {{aG\left( x \right)} \over {b + 1}} + C\)
Loigiaihay.com


- Câu 3.21 trang 144 sách bài tập Giải tích 12 Nâng cao
- Câu 3.22 trang 144 sách bài tập Giải tích 12 Nâng cao
- Câu 3.23 trang 144 sách bài tập Giải tích 12 Nâng cao
- Câu 3.24 trang 144 sách bài tập Giải tích 12 Nâng cao
- Câu 3.19 trang 143 sách bài tập Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao