Câu 3.20 trang 143 sách bài tập Giải tích 12 Nâng cao>
Giả sử khi áp dụng công thức nguyên hàm từng phần, ta dẫn đến
Đề bài
Giả sử khi áp dụng công thức nguyên hàm từng phần, ta dẫn đến
\(\int {f\left( x \right)} dx = aG\left( x \right) - b\int {f\left( x \right)} dx\)
Với \(b \ne 1\)
Chứng minh rằng
\(\int {f\left( x \right)} dx = {{aG\left( x \right)} \over {b + 1}} + C\) với C là hằng số.
Lời giải chi tiết
Ta có: \(\int {f\left( x \right)dx + b} \int {f\left( x \right)} dx = aG\left( x \right) + {C_1}\) (\({C_1}\) là hằng số nào đó).
Hay \(\left( {b + 1} \right)f\left( x \right)dx = aG\left( x \right) + {C_1}\)
Do đó: \(\int {f\left( x \right)dx} = {{aG\left( x \right)} \over {b + 1}} + {{{C_1}} \over {b + 1}} = {{aG\left( x \right)} \over {b + 1}} + C\)
Loigiaihay.com
- Câu 3.21 trang 144 sách bài tập Giải tích 12 Nâng cao
- Câu 3.22 trang 144 sách bài tập Giải tích 12 Nâng cao
- Câu 3.23 trang 144 sách bài tập Giải tích 12 Nâng cao
- Câu 3.24 trang 144 sách bài tập Giải tích 12 Nâng cao
- Câu 3.19 trang 143 sách bài tập Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao