Câu 2.69 trang 81 sách bài tập Giải tích 12 Nâng cao>
Cho số n nguyên dương
Cho số n nguyên dương
LG a
Tính \({f^{\left( n \right)}}\left( x \right)\), biết rằng \(f\left( x \right) = {a^x}\left( {a > 0,a \ne 1} \right)\)
Phương pháp giải:
Chứng minh công thức trên bằng phương pháp quy nạp toán học và sử dụng \(\left( {{a^x}} \right)' = {a^x}\ln a\)
Lời giải chi tiết:
\({f^{\left( n \right)}}\left( x \right) = {a^x}{\ln ^n}a\)
LG b
Tính \({f^{\left( n \right)}}\left( x \right)\), biết rằng \(f\left( x \right) = {e^{3x}};f\left( x \right) = {e^{kx}}\)(k là hằng số)
Lời giải chi tiết:
Với \(f\left( x \right) = {e^{3x}}\) thì \({f^{\left( n \right)}}\left( x \right) = {3^n}.{e^{3x}}\)
Với \(f\left( x \right) = {e^{kx}}\) thì \({f^{\left( n \right)}}\left( x \right) = {k^n}.{e^{kx}}\)
LG c
Tính \({f^{\left( {2005} \right)}}\left( x \right)\), biết rằng \(f\left( x \right) = {e^x} + {e^{ - x}}\)
Lời giải chi tiết:
\(f'\left( x \right) = {e^x} - {e^{ - x}};\\f''\left( x \right) = {e^x} + {e^{ - x}};...;{f^{\left( {2005} \right)}}\left( x \right) \\= {e^x} - {e^{ - x}}\)
Loigiaihay.com
- Câu 2.70 trang 81 sách bài tập Giải tích 12 Nâng cao
- Câu 2.71 trang 82 sách bài tập Giải tích 12 Nâng cao
- Câu 2.72 trang 82 sách bài tập Giải tích 12 Nâng cao
- Câu 2.73 trang 82 sách bài tập Giải tích 12 Nâng cao
- Câu 2.74 trang 82 sách bài tập Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao