Bài 3.34 trang 132 SBT đại số và giải tích 11


Giải bài 3.34 trang 132 sách bài tập đại số và giải tích 11. Hãy chọn dãy số là cấp số nhân trong các dãy số ...

Đề bài

Hãy chọn dãy số là cấp số nhân trong các dãy số \(\left( {{u_n}} \right)\) sau :

A. \({u_n} = \dfrac{{{2^n} - 1}}{{{2^n} + 1}}\)

B. \({u_n} = 3n\)

C. \({u_n} = \dfrac{{{{\left( { - 3} \right)}^n}}}{3}\)

D. \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = \sqrt {u_n^2 + 1} \,voi\,n \ge 1\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Dãy số \(\left( {{u_n}} \right)\) được gọi là cấp số nhân nếu \({u_{n + 1}} = q{u_n}\).

Lời giải chi tiết

Xét đáp án C:

\(\dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{{{\left( { - 3} \right)}^{n + 1}}}}{3}:\dfrac{{{{\left( { - 3} \right)}^n}}}{3} =  - 3\) nên \({u_{n + 1}} =  - 3{u_n}\) hay \(\left( {{u_n}} \right)\) là cấp số nhân công bội \(q =  - 3\), số hạng đầu \({u_1} =  - 1\).

Chọn C.

 Loigiaihay.com


Bình chọn:
3.8 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí