Bài 3.34 trang 132 SBT đại số và giải tích 11


Giải bài 3.34 trang 132 sách bài tập đại số và giải tích 11. Hãy chọn dãy số là cấp số nhân trong các dãy số ...

Đề bài

Hãy chọn dãy số là cấp số nhân trong các dãy số \(\left( {{u_n}} \right)\) sau :

A. \({u_n} = \dfrac{{{2^n} - 1}}{{{2^n} + 1}}\)

B. \({u_n} = 3n\)

C. \({u_n} = \dfrac{{{{\left( { - 3} \right)}^n}}}{3}\)

D. \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = \sqrt {u_n^2 + 1} \,voi\,n \ge 1\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Dãy số \(\left( {{u_n}} \right)\) được gọi là cấp số nhân nếu \({u_{n + 1}} = q{u_n}\).

Lời giải chi tiết

Xét đáp án C:

\(\dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{{{\left( { - 3} \right)}^{n + 1}}}}{3}:\dfrac{{{{\left( { - 3} \right)}^n}}}{3} =  - 3\) nên \({u_{n + 1}} =  - 3{u_n}\) hay \(\left( {{u_n}} \right)\) là cấp số nhân công bội \(q =  - 3\), số hạng đầu \({u_1} =  - 1\).

Chọn C.

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Cấp số nhân

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài