
Cấp số nhân \(\left( {{u_n}} \right)\)có
\(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102.\end{array} \right.\)
LG a
Tìm số hạng đầu và công bội của cấp số nhân
Phương pháp giải:
Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\)
Lời giải chi tiết:
\(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}.{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + {q^4}} \right) = 51\\{u_1}q\left( {1 + {q^4}} \right) = 102\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 3\end{array} \right.\)
Vậy \({u_1} = 3,q = 2.\)
LG b
Hỏi tổng của bao nhiêu số hạng đầu tiên sẽ bằng \(3069\) ?
Phương pháp giải:
Công thức tính tổng \(n\) số hạng đầu của cấp số nhân \({S_n} = \dfrac{{{u_1}\left( {{q^n} - 1} \right)}}{{q - 1}}\)
Lời giải chi tiết:
Ta có: \({S_n} = \dfrac{{{u_1}\left( {{q^n} - 1} \right)}}{{q - 1}} = 3069\)\( \Leftrightarrow \dfrac{{3\left( {{2^n} - 1} \right)}}{{2 - 1}} = 3069\) \( \Leftrightarrow {2^n} - 1 = 1023\) \( \Leftrightarrow {2^n} = 1024 \Leftrightarrow n = 10\)
Vậy \(n = 10.\)
LG c
Số \(12288\) là số hạng thứ mấy ?
Phương pháp giải:
Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\)
Lời giải chi tiết:
Ta có: \({u_n} = {u_1}.{q^{n - 1}}\)\( \Leftrightarrow 12288 = {3.2^{n - 1}} \Leftrightarrow {2^{n - 1}} = 4096\) \( \Leftrightarrow n - 1 = 12 \Leftrightarrow n = 13\)
Vậy \(n = 13.\)
Loigiaihay.com
Giải bài 3.29 trang 131 sách bài tập đại số và giải tích 11. Tìm số các số hạng của cấp số nhân...
Giải bài 3.30 trang 131 sách bài tập đại số và giải tích 11. Tìm số hạng đầu và công bội của cấp số nhân ...
Giải bài 3.31 trang 131 sách bài tập đại số và giải tích 11. Bốn số lập thành một cấp số cộng.Lần lượt trừ mỗi số ấy cho 2, 6, 7, 2 ta nhận được một cấp số nhân.Tìm các số đó...
Giải bài 3.32 trang 131 sách bài tập đại số và giải tích 11. Viết bốn số xen giữa các số 5 và 160 để được một cấp số nhân...
Giải bài 3.33 trang 131 sách bài tập đại số và giải tích 11. Cho dãy số...
Giải bài 3.34 trang 132 sách bài tập đại số và giải tích 11. Hãy chọn dãy số là cấp số nhân trong các dãy số ...
Giải bài 3.35 trang 132 sách bài tập đại số và giải tích 11. Tổng S_n bằng:...
Giải bài 3.36 trang 132 sách bài tập đại số và giải tích 11. Cho cấp số nhân ...
Giải bài 3.27 trang 131 sách bài tập đại số và giải tích 11. Cho dãy số với ...
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: