Bài 3.28 trang 131 SBT đại số và giải tích 11


Giải bài 3.28 trang 131 sách bài tập đại số và giải tích 11. Tìm số hạng đầu và công bội của cấp số nhân ...

Lựa chọn câu để xem lời giải nhanh hơn

Cấp số nhân \(\left( {{u_n}} \right)\)có

\(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102.\end{array} \right.\)

LG a

Tìm số hạng đầu và công bội của cấp số nhân 

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\)

Lời giải chi tiết:

\(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1}.{q^4} = 51\\{u_1}q + {u_1}{q^5} = 102\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 + {q^4}} \right) = 51\\{u_1}q\left( {1 + {q^4}} \right) = 102\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 3\end{array} \right.\)

Vậy \({u_1} = 3,q = 2.\)

LG b

Hỏi tổng của bao nhiêu số hạng đầu tiên sẽ bằng \(3069\) ?

Phương pháp giải:

Công thức tính tổng \(n\) số hạng đầu của cấp số nhân \({S_n} = \dfrac{{{u_1}\left( {{q^n} - 1} \right)}}{{q - 1}}\)

Lời giải chi tiết:

Ta có: \({S_n} = \dfrac{{{u_1}\left( {{q^n} - 1} \right)}}{{q - 1}} = 3069\)\( \Leftrightarrow \dfrac{{3\left( {{2^n} - 1} \right)}}{{2 - 1}} = 3069\) \( \Leftrightarrow {2^n} - 1 = 1023\) \( \Leftrightarrow {2^n} = 1024 \Leftrightarrow n = 10\)

Vậy \(n = 10.\)

LG c

Số \(12288\) là số hạng thứ mấy ?

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\)

Lời giải chi tiết:

Ta có: \({u_n} = {u_1}.{q^{n - 1}}\)\( \Leftrightarrow 12288 = {3.2^{n - 1}} \Leftrightarrow {2^{n - 1}} = 4096\) \( \Leftrightarrow n - 1 = 12 \Leftrightarrow n = 13\)

Vậy \(n = 13.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Cấp số nhân

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài