Bài 3.30 trang 131 SBT đại số và giải tích 11


Giải bài 3.30 trang 131 sách bài tập đại số và giải tích 11. Tìm số hạng đầu và công bội của cấp số nhân ...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết

LG a

\(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right.\)

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\) 

Lời giải chi tiết:

Ta có hệ \(\left\{ \begin{array}{l}{u_1}{q^4} - {u_1} = 15\\{u_1}{q^3} - {u_1}q = 6\end{array} \right.\) hay \(\left\{ \begin{array}{l}{u_1}\left( {{q^4} - 1} \right) = 15\\{u_1}\left( {{q^3} - q} \right) = 6.\end{array} \right.{\rm{      }}\left( 1 \right)\)

Do (1) nên \(q \ne  \pm 1,\) suy ra \(\dfrac{{15}}{6} = \dfrac{{{q^4} - 1}}{{q\left( {{q^2} - 1} \right)}} = \dfrac{{{q^2} + 1}}{q}.\)

Biến đổi về phương trình \(2{q^2} - 5q + 2 = 0.\)

Giải ra được \(q = 2\) và \(q = \dfrac{1}{2}.\)

Nếu \(q = 2\) thì \({u_1} = 1.\)

Nếu \(q = \dfrac{1}{2}\) thì \({u_1} =  - 16.\)

Quảng cáo

Lộ trình SUN 2026

LG b

\(\left\{ \begin{array}{l}{u_2} - {u_4} + {u_5} = 10\\{u_3} - {u_5} + {u_6} = 20\end{array} \right.\)

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\)

Lời giải chi tiết:

Ta có: \(\left\{ \begin{array}{l}{u_1}q - {u_1}{q^3} + {u_1}{q^4} = 10\\{u_1}{q^2} - {u_1}{q^4} + {u_1}{q^5} = 20\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1}q - {u_1}{q^3} + {u_1}{q^4} = 10\\q\left( {{u_1}q - {u_1}{q^3} + {u_1}{q^4}} \right) = 20\end{array} \right.\)

Lấy pt dưới chia cho pt trên vế với vế ta được q=2.

\( \Rightarrow \left\{ \begin{array}{l}q = 2\\2{u_1} - 8{u_1} + 16{u_1} = 10\end{array} \right.\)  \( \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 1\end{array} \right.\)

Vậy \({u_1} = 1,q = 2.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí