Bài 3.30 trang 131 SBT đại số và giải tích 11>
Giải bài 3.30 trang 131 sách bài tập đại số và giải tích 11. Tìm số hạng đầu và công bội của cấp số nhân ...
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết
LG a
\(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right.\)
Phương pháp giải:
Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\)
Lời giải chi tiết:
Ta có hệ \(\left\{ \begin{array}{l}{u_1}{q^4} - {u_1} = 15\\{u_1}{q^3} - {u_1}q = 6\end{array} \right.\) hay \(\left\{ \begin{array}{l}{u_1}\left( {{q^4} - 1} \right) = 15\\{u_1}\left( {{q^3} - q} \right) = 6.\end{array} \right.{\rm{ }}\left( 1 \right)\)
Do (1) nên \(q \ne \pm 1,\) suy ra \(\dfrac{{15}}{6} = \dfrac{{{q^4} - 1}}{{q\left( {{q^2} - 1} \right)}} = \dfrac{{{q^2} + 1}}{q}.\)
Biến đổi về phương trình \(2{q^2} - 5q + 2 = 0.\)
Giải ra được \(q = 2\) và \(q = \dfrac{1}{2}.\)
Nếu \(q = 2\) thì \({u_1} = 1.\)
Nếu \(q = \dfrac{1}{2}\) thì \({u_1} = - 16.\)
LG b
\(\left\{ \begin{array}{l}{u_2} - {u_4} + {u_5} = 10\\{u_3} - {u_5} + {u_6} = 20\end{array} \right.\)
Phương pháp giải:
Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\)
Lời giải chi tiết:
Ta có: \(\left\{ \begin{array}{l}{u_1}q - {u_1}{q^3} + {u_1}{q^4} = 10\\{u_1}{q^2} - {u_1}{q^4} + {u_1}{q^5} = 20\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1}q - {u_1}{q^3} + {u_1}{q^4} = 10\\q\left( {{u_1}q - {u_1}{q^3} + {u_1}{q^4}} \right) = 20\end{array} \right.\)
Lấy pt dưới chia cho pt trên vế với vế ta được q=2.
\( \Rightarrow \left\{ \begin{array}{l}q = 2\\2{u_1} - 8{u_1} + 16{u_1} = 10\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 1\end{array} \right.\)
Vậy \({u_1} = 1,q = 2.\)
Loigiaihay.com
- Bài 3.31 trang 131 SBT đại số và giải tích 11
- Bài 3.32 trang 131 SBT đại số và giải tích 11
- Bài 3.33 trang 131 SBT đại số và giải tích 11
- Bài 3.34 trang 132 SBT đại số và giải tích 11
- Bài 3.35 trang 132 SBT đại số và giải tích 11
>> Xem thêm