Bài 3.33 trang 131 SBT đại số và giải tích 11


Giải bài 3.33 trang 131 sách bài tập đại số và giải tích 11. Cho dãy số...

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(\left( {{u_n}} \right):\left\{ \begin{array}{l}{u_1} = 0\\{u_{n + 1}} = \dfrac{{2{u_n} + 3}}{{{u_n} + 4}}{\rm{ voi }}n \ge 1.\end{array} \right.\)

LG a

Lập dãy số \(\left( {{x_n}} \right)\) với \({x_n} = \dfrac{{{u_n} - 1}}{{{u_n} + 3}}.\) Chứng minh dãy số \(\left( {{x_n}} \right)\) là cấp số nhân.

Phương pháp giải:

Xét tỉ số \(\dfrac{{{x_{n + 1}}}}{{{x_n}}}\) và chứng minh \(\dfrac{{{x_{n + 1}}}}{{{x_n}}} = q\) không đổi.

Lời giải chi tiết:

Từ giả thiết có

\({u_{n + 1}}\left( {{u_n} + 4} \right) = 2{u_n} + 3\) hay \({u_{n + 1}}.{u_n} + 4{u_{n + 1}} = 2{u_n} + 3{\rm{   }}\left( 1 \right)\)

Lập tỉ số \(\dfrac{{{x_{n + 1}}}}{{{x_n}}} = \dfrac{{{u_{n + 1}} - 1}}{{{u_{n + 1}} + 3}}.\dfrac{{{u_n} + 3}}{{{u_n} - 1}}\) \( = \dfrac{{{u_{n + 1}}{u_n} + 3{u_{n + 1}} - {u_n} - 3}}{{{u_{n + 1}}{u_n} - {u_{n + 1}} + 3{u_n} - 3}}{\rm{  }}\left( 2 \right)\)

Từ (1) suy ra \({u_{n + 1}}.{u_n} = 2{u_n} + 3 - 4{u_{n + 1,}}\) thay vào (2) ta được

\(\dfrac{{{x_{n + 1}}}}{{{x_n}}}\)\( = \dfrac{{2{u_n} + 3 - 4{u_{n + 1}} + 3{u_{n + 1}} - {u_n} - 3}}{{2{u_n} + 3 - 4{u_{n + 1}} - {u_{n + 1}} + 3{u_n} - 3}}\) \( = \dfrac{{{u_n} - {u_{n + 1}}}}{{5\left( {{u_n} - {u_{n + 1}}} \right)}} = \dfrac{1}{5}.\)

Vậy \({x_{n + 1}} = \dfrac{1}{5}{x_n},\) ta có cấp số nhân \(\left( {{x_n}} \right)\) với \(q = \dfrac{1}{5}\) và \({x_1} =  - \dfrac{1}{3}.\)

Quảng cáo

Lộ trình SUN 2026

LG b

Tìm công thức tính \({x_n},{u_n}\) theo n.

Phương pháp giải:

Từ đó suy ra công thức của số hạng tổng quát \({x_n}\) và suy ra \({u_n}\).

Lời giải chi tiết:

Ta có \({x_n} =  - \dfrac{1}{3}{\left( {\dfrac{1}{5}} \right)^{n - 1}}.\)

Lại có:

\(\begin{array}{l}
{x_n} = \frac{{{u_n} - 1}}{{{u_n} + 3}}\\
\Rightarrow {u_n} - 1 = {x_n}\left( {{u_n} + 3} \right)\\
\Leftrightarrow - 1 - 3{x_n} = {u_n}\left( {{x_n} - 1} \right)\\
\Rightarrow {u_n} = \frac{{ - 1 - 3{x_n}}}{{{x_n} - 1}} = \frac{{3{x_n} + 1}}{{1 - {x_n}}}\\
= \frac{{3.\left[ { - \frac{1}{3}{{\left( {\frac{1}{5}} \right)}^{n - 1}}} \right] + 1}}{{1 - \left[ { - \frac{1}{3}{{\left( {\frac{1}{5}} \right)}^{n - 1}}} \right]}}\\
= \frac{{ - {{\left( {\frac{1}{5}} \right)}^{n - 1}} + 1}}{{1 + \frac{1}{3}{{\left( {\frac{1}{5}} \right)}^{n - 1}}}}
\end{array}\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí